Skip to main content

Advertisement

Log in

Landscape-scale drivers of fish faunal homogenization and differentiation in the eastern United States

  • AQUATIC HOMOGENOCENE
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Establishment of nonnative fishes and extirpations of native fishes have homogenized freshwater fish faunas, yet our understanding of the drivers of this process remain limited. We addressed this knowledge gap by testing three hypotheses about introductions and homogenization of fish communities is the eastern United States: First, whether nonnative fish introductions have caused fish faunas to become homogenized or differentiated; second, whether patterns of faunal change are related to native species richness, propagule pressure, and anthropogenic disturbance; third, whether invasion patterns are attributable to either biotic resistance or preadaptation. We compared taxonomic similarity among watersheds in historical and contemporary time steps, and modeled contributions of different drivers to faunal change within watersheds. Average similarity among watersheds nearly doubled in contemporary times, pointing to substantial fish faunal homogenization. No watersheds lost species; patterns of homogenization are attributable entirely to nonnative species invasion. Community change and nonnative richness were positively associated with agriculture-urban land use, recreational fishing demand, and elevation. Native richness negatively affected community change and nonnative richness. Nonnative species originated from watersheds with higher richness than the ones they invaded, suggesting a role for biotic resistance. Understanding how mechanisms operate across spatial scales will help guide future conservation efforts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Alofs, K. M. & D. A. Jackson, 2014. Meta-analysis suggests biotic resistance in freshwater environments is driven by consumption rather than competition. Ecology 95(12): 3259–3270.

    Google Scholar 

  • Baiser, B., J. D. Olden, S. Record, J. L. Lockwood & M. L. McKinney, 2012. Pattern and process of biotic homogenization in the New Pangaea. Proceedings of the Royal Society B: Biological Sciences 279(1748): 4772–4777.

    PubMed  Google Scholar 

  • Blackburn, T. M., P. Pyšek, S. Bacher, J. T. Carlton, R. P. Duncan, V. Jarošík, J. R. Wilson & D. M. Richardson, 2011. A proposed unified framework for biological invasions. Trends in Ecology & Evolution 26(7): 333–339.

    Google Scholar 

  • Budnick, W. R., T. Leboucher, J. Belliard, J. Soininen, I. Lavoie, K. Pound, A. Jamoneau, J. Tison-Rosebery, E. Tales & V. Pajunen, 2019. Local and regional drivers of taxonomic homogenization in stream communities along a land use gradient. Global Ecology and Biogeography 2019: 1597–1609.

    Google Scholar 

  • Catford, J. A., R. Jansson & C. Nilsson, 2009. Reducing redundancy in invasion ecology by integrating hypotheses into a single theoretical framework. Diversity and Distributions 15(1): 22–40.

    Google Scholar 

  • Clavero, M. & E. Garcia-Berthou, 2006. Homogenization dynamics and introduction routes of invasive freshwater fish in the Iberian Peninsula. Ecological Applications 16(6): 2313–2324.

    PubMed  Google Scholar 

  • Clavero, M. & V. Hermoso, 2011. Reservoirs promote the taxonomic homogenization of fish communities within river basins. Biodiversity and Conservation 20(1): 41–57.

    Google Scholar 

  • Colautti, R. I., I. A. Grigorovich & H. J. MacIsaac, 2006. Propagule pressure: a null model for biological invasions. Biological Invasions 8(5): 1023–1037.

    Google Scholar 

  • Davis, A. & J. Darling, 2017. Recreational freshwater fishing drives non-native aquatic species richness patterns at a continental scale. Diversity and Distributions 23(6): 692–702.

    CAS  PubMed  Google Scholar 

  • Dawson, W., R. P. Rohr, M. van Kleunen & M. Fischer, 2012. Alien plant species with a wider global distribution are better able to capitalize on increased resource availability. New Phytologist 194(3): 859–867.

    PubMed  Google Scholar 

  • Dextrase, A. J. & N. E. Mandrak, 2006. Impacts of alien invasive species on freshwater fauna at risk in Canada. Biological Invasions 8(1): 13–24.

    Google Scholar 

  • Domisch, S., G. Amatulli & W. Jetz, 2015. Near-global freshwater-specific environmental variables for biodiversity analyses in 1 km resolution. Scientific Data 2: 150073.

    CAS  PubMed  PubMed Central  Google Scholar 

  • dos Santos, D. A., D. J. Hoeinghaus & L. C. Gomes, 2018. Spatial scales and the invasion paradox: a test using fish assemblages in a Neotropical floodplain. Hydrobiologia 817(1): 121–131.

    Google Scholar 

  • Fitzgerald, D. B., M. Tobler & K. O. Winemiller, 2016. From richer to poorer: successful invasion by freshwater fishes depends on species richness of donor and recipient basins. Global change biology 22(7): 2440–2450.

    PubMed  Google Scholar 

  • Fridley, J. D. & D. F. Sax, 2014. The imbalance of nature: revisiting a Darwinian framework for invasion biology. Global Ecology and Biogeography 23(11): 1157–1166.

    Google Scholar 

  • Fridley, J., J. Stachowicz, S. Naeem, D. Sax, E. Seabloom, M. Smith, T. Stohlgren, D. Tilman & B. V. Holle, 2007. The invasion paradox: reconciling pattern and process in species invasions. Ecology 88(1): 3–17.

    CAS  PubMed  Google Scholar 

  • Gesch, D., M. Oimoen, S. Greenlee, C. Nelson, M. Steuck & D. Tyler, 2002. The national elevation dataset. Photogrammetric Engineering and Remote Sensing 68(1): 5–32.

    Google Scholar 

  • Giam, X. & J. D. Olden, 2016. Environment and predation govern fish community assembly in temperate streams. Global Ecology and Biogeography 25(10): 1194–1205.

    Google Scholar 

  • Gido, K. B. & J. H. Brown, 1999. Invasion of North American drainages by alien fish species. Freshwater Biology 42(2): 387–399.

    Google Scholar 

  • Gido, K. B., J. F. Schaefer & J. Pigg, 2004. Patterns of fish invasions in the Great Plains of North America. Biological Conservation 118(2): 121–131.

    Google Scholar 

  • González-Suárez, M., S. Bacher & J. M. Jeschke, 2015. Intraspecific trait variation is correlated with establishment success of alien mammals. The American Naturalist 185(6): 737–746.

    PubMed  Google Scholar 

  • Guo, Q. & J. D. Olden, 2014. Spatial scaling of non-native fish richness across the United States. PLoS ONE 9(5): e97727.

    PubMed  PubMed Central  Google Scholar 

  • Herborg, L.-M., C. L. Jerde, D. M. Lodge, G. M. Ruiz & H. J. MacIsaac, 2007. Predicting invasion risk using measures of introduction effort and environmental niche models. Ecological Applications 17(3): 663–674.

    PubMed  Google Scholar 

  • Hierro, J. L., J. L. Maron & R. M. Callaway, 2005. A biogeographical approach to plant invasions: the importance of studying exotics in their introduced and native range. Journal of Ecology 93(1): 5–15.

    Google Scholar 

  • Homer, C., J. Dewitz, L. Yang, S. Jin, P. Danielson, G. Xian, J. Coulston, N. Herold, J. Wickham & K. Megown, 2015. Completion of the 2011 National Land Cover Database for the conterminous United States–representing a decade of land cover change information. Photogrammetric Engineering & Remote Sensing 81(5): 345–354.

    Google Scholar 

  • Jeschke, J. M. & D. L. Strayer, 2006. Determinants of vertebrate invasion success in Europe and North America. Global Change Biology 12: 1608–1698.

    Google Scholar 

  • Johnson, P. T., J. D. Olden & M. J. Vander Zanden, 2008. Dam invaders: impoundments facilitate biological invasions into freshwaters. Frontiers in Ecology and the Environment 6(7): 357–363.

    Google Scholar 

  • Kennedy, T. A., S. Naeem, K. M. Howe, J. M. Knops, D. Tilman & P. Reich, 2002. Biodiversity as a barrier to ecological invasion. Nature 417(6889): 636–638.

    CAS  PubMed  Google Scholar 

  • Kilian, J. V., R. J. Klauda, S. Widman, M. Kashiwagi, R. Bourquin, S. Weglein & J. Schuster, 2012. An assessment of a bait industry and angler behavior as a vector of invasive species. Biological Invasions 14(7): 1469–1481.

    Google Scholar 

  • Koleff, P., K. J. Gaston & J. J. Lennon, 2003. Measuring beta diversity for presence–absence data. Journal of Animal Ecology 72(3): 367–382.

    Google Scholar 

  • Leprieur, F., O. Beauchard, S. Blanchet, T. Oberdorff & S. Brosse, 2008a. Fish invasions in the world’s river systems: when natural processes are blurred by human activities. PLoS biology 6(2): e28.

    PubMed  PubMed Central  Google Scholar 

  • Leprieur, F., O. Beauchard, B. Hugueny, G. Grenouillet & S. Brosse, 2008b. Null model of biotic homogenization: a test with the European freshwater fish fauna. Diversity and Distributions 14(2): 291–300.

    Google Scholar 

  • Leprieur, F., J. D. Olden, S. Lek & S. Brosse, 2009. Contrasting patterns and mechanisms of spatial turnover for native and exotic freshwater fish in Europe. Journal of Biogeography 36(10): 1899–1912.

    Google Scholar 

  • Liu, C., D. He, Y. Chen & J. D. Olden, 2017. Species invasions threaten the antiquity of China’s freshwater fish fauna. Diversity and Distributions 23(5): 556–566.

    Google Scholar 

  • Lockwood, J. L., P. Cassey & T. Blackburn, 2005. The role of propagule pressure in explaining species invasions. Trends in Ecology and Evolution 20: 223–228.

    PubMed  Google Scholar 

  • Lockwood, J. L., P. Cassey & T. M. Blackburn, 2009. The more you introduce the more you get: the role of colonization pressure and propagule pressure in invasion ecology. Diversity and Distributions 15(5): 904–910.

    Google Scholar 

  • Magnusson, A., H. Skaug, A. Nielsen, C. Berg, K. Kristensen, M. Maechler, K. van Bentham, B. Bolker & M. Brooks, 2017. glmmTMB: generalized linear mixed models using template model builder. R package version 01 3.

  • Marchetti, M. P., T. Light, J. Feliciano, T. Armstrong, Z. Hogan, J. Viers & P. B. Moyle, 2001. Homogenization of California’s Fish Fauna Through Abiotic Change Biotic homogenization. Springer, New York: 259–278.

    Google Scholar 

  • Marchetti, M. P., T. Light, P. B. Moyle & J. H. Viers, 2004a. Fish invasions in California watersheds: testing hypotheses using landscape patterns. Ecological Applications 14(5): 1507–1525.

    Google Scholar 

  • Marchetti, M. P., P. B. Moyle & R. Levine, 2004b. Alien fishes in California watersheds: characteristics of successful and failed invaders. Ecological Applications 14(2): 587–596.

    Google Scholar 

  • Marchetti, M. P., P. B. Moyle & R. Levine, 2004c. Invasive species profiling? Exploring the characteristics of non-native fishes across invasion stages in California. Freshwater Biology 49(5): 646–661.

    Google Scholar 

  • Marr, S. M., M. P. Marchetti, J. D. Olden, E. Garcia-Berthou, D. L. Morgan, I. Arismendi, J. A. Day, C. L. Griffiths & P. H. Skelton, 2010. Freshwater fish introductions in mediterranean-climate regions: are there commonalities in the conservation problem? Diversity and Distributions 16: 606–619.

    Google Scholar 

  • Matsuzaki, S. I. S., T. Sasaki & M. Akasaka, 2013. Consequences of the introduction of exotic and translocated species and future extirpations on the functional diversity of freshwater fish assemblages. Global Ecology and Biogeography 22(9): 1071–1082.

    Google Scholar 

  • Maurel, N., J. Hanspach, I. Kühn, P. Pyšek & M. van Kleunen, 2016. Introduction bias affects relationships between the characteristics of ornamental alien plants and their naturalization success. Global Ecology and Biogeography 25(12): 1500–1509.

    Google Scholar 

  • Mazzotta, M., L. Wainger, S. Sifleet, J. T. Petty & B. Rashleigh, 2015. Benefit transfer with limited data: an application to recreational fishing losses from surface mining. Ecological Economics 119: 384–398.

    Google Scholar 

  • McKinney, M. L., 2005. Species introduced from nearby sources have a more homogenizing effect than species from distant sources: evidence from plants and fishes in the USA. Diversity and Distributions 11(5): 367–374.

    Google Scholar 

  • McKinney, M. L. & J. L. Lockwood, 1999. Biotic homogenization: a few winners replacing many losers in the next mass extinction. Trends in Ecology & Evolution 14(11): 450–453.

    CAS  Google Scholar 

  • Muneepeerakul, R., E. Bertuzzo, H. J. Lynch, W. F. Fagan, A. Rinaldo & I. Rodriguez-Iturbe, 2008. Neutral metacommunity models predict fish diversity patterns in Mississippi-Missouri basin. Nature 453: 223.

    Google Scholar 

  • NatureServe, 2010. Digital Distribution Maps of the Freshwater Fishes in the Conterminous United States, version 3.0. Arlington.

  • Olden, J. D., 2006. Biotic homogenization: a new research agenda for conservation biogeography. Journal of Biogeography 33(12): 2027–2039.

    Google Scholar 

  • Olden, J. D. & N. L. Poff, 2003. Toward a mechanistic understanding and prediction of biotic homogenization. The American Naturalist 162(4): 442–460.

    PubMed  Google Scholar 

  • Olden, J. D. & N. L. Poff, 2004. Ecological processes driving biotic homogenization: testing a mechanistic model using fish faunas. Ecology 85(7): 1867–1875.

    Google Scholar 

  • Olden, J. D., N. L. Poff, M. R. Douglas, M. E. Douglas & K. D. Fausch, 2004. Ecological and evolutionary consequences of biotic homogenization. Trends in Ecology & Evolution 19(1): 18–24.

    Google Scholar 

  • Olden, J. D., N. L. Poff & K. R. Bestgen, 2006. Life-history strategies predict fish invasions and extirpations in the Colorado River Basin. Ecological Monographs 76(1): 25–40.

    Google Scholar 

  • Olden, J. D., M. J. Kennard & B. J. Pusey, 2008. Species invasions and the changing biogeography of Australian freshwater fishes. Global Ecology and Biogeography 17(1): 25–37.

    Google Scholar 

  • Olden, J. D., L. Comte & X. Giam, 2018. The Homogocene: a research prospectus for the study of biotic homogenisation. NeoBiota 37: 23.

    Google Scholar 

  • Peoples, B. K. & E. A. Frimpong, 2011. Among-pass, interregional, and single- versus multiple-season comparisons of detection probabilities of stream fishes. Transactions of the American Fisheries Society 140: 67–83.

    Google Scholar 

  • Peoples, B. K. & R. Goforth, 2017a. Commonality in traits and hierarchical structure of vertebrate establishment success. Diversity and Distributions 23(8): 854–862.

    Google Scholar 

  • Peoples, B. K. & R. R. Goforth, 2017b. The indirect role of species-level factors in biological invasions. Global Ecology and Biogeography 26(5): 524–532.

    Google Scholar 

  • Peoples, B. K. & S. R. Midway, 2018. Fishing pressure and species traits affect stream fish invasions both directly and indirectly. Diversity and Distributions 24(8): 1158–1168.

    Google Scholar 

  • Peoples, B. K., S. R. Midway, J. T. DeWeber & T. Wagner, 2018. Catchment-scale determinants of nonindigenous minnow richness in the eastern United States. Ecology of Freshwater Fish 27(1): 138–145.

    Google Scholar 

  • Petsch, D. K., 2016. Causes and consequences of biotic homogenization in freshwater ecosystems. International Review of Hydrobiology 101(3–4): 113–122.

    Google Scholar 

  • Pimm, S. L., G. J. Russell, J. L. Gittleman & T. M. Brooks, 1995. The future of biodiversity. Science 269(5222): 347–350.

    CAS  PubMed  Google Scholar 

  • Pool, T. K. & J. D. Olden, 2012. Taxonomic and functional homogenization of an endemic desert fish fauna. Diversity and Distributions 18(4): 366–376.

    Google Scholar 

  • Pregler, K. C., J. C. Vokoun, T. Jensen & N. Hagstrom, 2015. Using multimethod occupancy estimation models to quantify gear differences in detection probabilities: is backpack electrofishing missing occurrences for a species of concern? Transactions of the American Fisheries Society 144(1): 89–95.

    Google Scholar 

  • Pyšek, P., A. M. Manceur, C. Alba, K. F. McGregor, J. Pergl, K. Štajerová, M. Chytrý, J. Danihelka, J. Kartesz & J. Klimešová, 2015. Naturalization of central European plants in North America: species traits, habitats, propagule pressure, residence time. Ecology 96(3): 762–774.

    PubMed  Google Scholar 

  • Rahel, F. J., 2000. Homogenization of fish faunas across the United States. Science 288(5467): 854–856.

    CAS  PubMed  Google Scholar 

  • Ribeiro, F., B. Elvira, M. J. Collares-Pereira & P. B. Moyle, 2008. Life-history traits of non-native fishes in Iberian watersheds across several invasion stages: a first approach. Biological Invasions 10(1): 89–102.

    Google Scholar 

  • Ricciardi, A. & S. K. Atkinson, 2004. Distinctiveness magnifies the impact of biological invaders in aquatic ecosystems. Ecology Letters 7(9): 781–784.

    Google Scholar 

  • Rosenzweig, M. L., 2001. The four questions: what does the introduction of exotic species do to diversity? Evolutionary Ecology Research 3(3): 361–367.

    Google Scholar 

  • Sax, D. F. & J. H. Brown, 2000. The paradox of invasion. Global Ecology and Biogeography 9(5): 363–371.

    Google Scholar 

  • Scott, M. C. & G. S. Helfman, 2001. Native invasions, homogenization, and the mismeasure of integrity of fish assemblages. Fisheries 26(11): 6–15.

    Google Scholar 

  • Seaber, P. R., F. P. Kapinos & G. L. Knapp, 1987. Hydrologic Unit Maps. US Government Printing Office, Washington, DC.

    Google Scholar 

  • Simberloff, D., 2009. The role of propagule pressure in biological invasions. Annual Review of Ecology, Evolution and Systematics 40: 81–102.

    Google Scholar 

  • Smith, K. G., 2006. Patterns of nonindigenous herpetofaunal richness and biotic homogenization among Florida counties. Biological Conservation 127(3): 327–335.

    Google Scholar 

  • Sommerwerk, N., C. Wolter, J. Freyhof & K. Tockner, 2017. Components and drivers of change in European freshwater fish faunas. Journal of Biogeography 44: 1781–1790.

    Google Scholar 

  • Stewart, D. R., A. W. Walters & F. J. Rahel, 2016. Landscape-scale determinants of native and non-native Great Plains fish distributions. Diversity and Distributions 22(2): 225–238.

    Google Scholar 

  • Strecker, A. L. & J. D. Olden, 2014. Fish species introductions provide novel insights into the patterns and drivers of phylogenetic structure in freshwaters. Proceedings of the Royal Society of London B: Biological Sciences 281(1778): 20133003.

    Google Scholar 

  • Taylor, E. B., 2004. An analysis of homogenization and differentiation of Canadian freshwater fish faunas with an emphasis on British Columbia. Canadian Journal of Fisheries and Aquatic Sciences 61(1): 68–79.

    Google Scholar 

  • Team, R. D. C., 2018. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna.

    Google Scholar 

  • Thuiller, W., L. Gallien, I. Boulangeat, F. De Bello, T. Münkemüller, C. Roquet & S. Lavergne, 2010. Resolving Darwin’s naturalization conundrum: a quest for evidence. Diversity and Distributions 16(3): 461–475.

    Google Scholar 

  • United States Army Corps of Engineers. 2018. National Inventory of Dams.

  • Vila-Gispert, A., C. Alcaraz & E. García-Berthou, 2005. Life-History Traits of Invasive Fish in Small Mediterranean Streams Issues in Bioinvasion Science. Springer, New York: 107–116.

    Google Scholar 

  • Villéger, S., S. Blanchet, O. Beauchard, T. Oberdorff & S. Brosse, 2011. Homogenization patterns of the world’s freshwater fish faunas. Proceedings of the National Academy of Sciences USA 108(44): 18003–18008.

    Google Scholar 

  • Villéger, S., G. Grenouillet & S. Brosse, 2014. Functional homogenization exceeds taxonomic homogenization among E uropean fish assemblages. Global Ecology and Biogeography 23(12): 1450–1460.

    Google Scholar 

  • Vitousek, P. M., H. A. Mooney, J. Lubchenco & J. M. Melillo, 1997. Human domination of Earth’s ecosystems. Science 277(5325): 494–499.

    CAS  Google Scholar 

  • Vitule, J. R. S., F. Skóra & V. Abilhoa, 2012. Homogenization of freshwater fish faunas after the elimination of a natural barrier by a dam in Neotropics. Diversity and Distributions 18(2): 111–120.

    Google Scholar 

  • Wagner, M. D., D. A. Schumann & B. J. Smith, 2019. Gear effectiveness and size selectivity for five cryptic madtom species (Noturus spp.). Journal of Applied Ichthyology 35(3): 673–682.

    Google Scholar 

Download references

Acknowledgements

We thank the numerous agency and university employees who facilitated access to species occurrences. Comments by two anonymous reviewers greatly improved the manuscript. This article represents Technical Contribution Number 6814 of the Clemson University Experiment Station.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brandon K. Peoples.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Guest editors: André A. Padial, Julian D. Olden & Jean R. S. Vitule / The Aquatic Homogenocene.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peoples, B.K., Davis, A.J.S., Midway, S.R. et al. Landscape-scale drivers of fish faunal homogenization and differentiation in the eastern United States. Hydrobiologia 847, 3727–3741 (2020). https://doi.org/10.1007/s10750-019-04162-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-019-04162-4

Keywords

Navigation