Skip to main content
Log in

Natural replacement of invasive brown trout by brook charr in an upper Midwestern United States stream

  • CHARR III
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Competition with invasive species and a warming climate have threatened brook charr (Salvelinus fontinalis) populations throughout their native range. In particular, brown trout (Salmo trutta) often displace brook charr when the two are sympatric. Brook charr and brown trout populations were monitored annually in a Minnesota stream from 1981 to 2017. Both species increased in annual production during the first 18 years of monitoring. During the last 15 years, brown trout production steadily decreased, while brook charr continued to increase. Adult brook charr production increased from a low of 13.5 kg/ha/year in 1983 to a high of 357.7 kg/ha/year in 2013. Adult brown trout production increased from 40.1 kg/ha/year in 1982 to a high of 256.9 kg/ha/year in 2000 before decreasing to zero in 2011. Contrary to previous observations and predictions, brook charr displaced brown trout during our long-term monitoring. During this period, both air temperature and brown trout abundance increased in the region. However, brook charr may be outcompeting brown trout in this particular reach due to decreasing water temperature brought about by increasing base flow discharge. This study provides a rare example of a native charr species displacing an invader without direct management intervention.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alexander, G. R., 1977. Consumption of small trout by large predatory brown trout in the North Branch of the Au Sable River, Michigan. Michigan Department of Natural Resources, Fisheries Research Report 1855, Lansing.

  • Benjamin, J. R. & C. V. Baxter, 2010. Do nonnative salmonines exhibit greater density and production than the natives they replace? A comparison of nonnative brook trout with native cutthroat trout. Transactions of the American Fisheries Society 139: 641–651.

    Article  Google Scholar 

  • Blann, K., J. F. Nerbonne & B. Vondracek, 2002. Relationship of riparian buffer type to water temperature in the Driftless Area Ecoregion of Minnesota. North American Journal of Fisheries Management 22: 441–451.

    Article  Google Scholar 

  • Carlson, S. M., A. P. Hendry & B. H. Letcher, 2007. Growth rate differences between resident native brook trout and non-native brown trout. Journal of Fish Biology 71: 1430–1447.

    Article  Google Scholar 

  • Constantz, J., 1998. Interaction between stream temperature, streamflow, and groundwater exchanges in alpine streams. Water Resources Research 34: 1609–1615.

    Article  Google Scholar 

  • Dauwalter, D. C., F. J. Rahel & K. G. Gerow, 2009. Temporal variation in trout populations: implications for monitoring and trend detection. Transactions of the American Fisheries Society 138: 38–51.

    Article  Google Scholar 

  • DeWald, L. & M. A. Wilzbach, 1992. Interactions between native brook trout and hatchery brown trout: effects on habitat use, feeding, and growth. Transactions of the American Fisheries Society 121: 287–296.

    Article  Google Scholar 

  • Dodds, W. K., et al., 2012. Surprises and insights from long-term aquatic data sets and experiments. BioScience 62: 709–721.

    Article  Google Scholar 

  • Fausch, K. D., 2008. A paradox of trout invasions in North America. Biological Invasions 10: 685–701.

    Article  Google Scholar 

  • Fausch, K. D. & R. J. White, 1981. Competition between brook trout (Salvelinus fontinalis) and brown trout (Salmo trutta) for positions in a Michigan stream. Canadian Journal of Fisheries and Aquatic Sciences 38: 1220–1227.

    Article  Google Scholar 

  • Flebbe, P. A., L. D. Roghair & J. L. Bruggink, 2006. Spatial modeling to project southern Appalachian trout distribution in a warmer climate. Transactions of the American Fisheries Society 135: 1371–1382.

    Article  Google Scholar 

  • Gebert, W. A. & W. R. Krug, 1996. Streamflow trends in Wisconsin’s driftless area. Water Resources Bulletin 32: 733–744.

    Article  CAS  Google Scholar 

  • Grant, G. C., B. Vondracek & P. W. Sorensen, 2002. Spawning interactions between sympatric brown and brook trout may contribute to species replacement. Transactions of the American Fisheries Society 131: 569–576.

    Article  Google Scholar 

  • Hakala, J. P. & K. J. Hartman, 2004. Drought effect on stream morphology and brook trout (Salvelinus fontinalis) populations in forested headwater streams. Hydrobiologia 515: 203–213.

    Article  Google Scholar 

  • Harvey, B. C., R. J. Nakamoto & J. L. White, 2006. Reduced streamflow lowers dry-season growth of rainbow trout in a small stream. Transactions of the American Fisheries Society 135: 998–1005.

    Article  Google Scholar 

  • Hasegawa, K. & K. Maekawa, 2008. Different longitudinal distribution patterns of native white-spotted charr and non-native brown trout in Monbetsu stream, Hokkaido, northern Japan. Ecology of Freshwater Fish 17: 189–192.

    Article  Google Scholar 

  • Hitt, N. P., E. L. Snook & D. L. Massie, 2017. Brook trout use of thermal refugia and foraging habitat influenced by brown trout. Canadian Journal of Fisheries and Aquatic Sciences 74: 406–418.

    Article  Google Scholar 

  • Hoxmeier, R. J. H. & D. J. Dieterman, 2013. Seasonal movement, growth and survival of brook trout in sympatry with brown trout in Midwestern US streams. Ecology of Freshwater Fish 22: 530–542.

    Article  Google Scholar 

  • Hoxmeier, R. J. H. & D. J. Dieterman, 2016. Long-term population demographics of native brook trout following manipulative reduction of an invader. Biological Invasions 18: 2911–2922.

    Article  Google Scholar 

  • Hoxmeier, R. J. H., D. J. Dieterman & L. M. Miller, 2015. Brook trout distribution, genetics, and population characteristics in the driftless area of Minnesota. North American Journal of Fisheries Management 35: 632–648.

    Article  Google Scholar 

  • Juckem, P. F., R. J. Hunt, M. P. Anderson & D. M. Robertson, 2008. Effects of climate and land management change on streamflow in the driftless area of Wisconsin. Journal of Hydrology 355: 123–130.

    Article  Google Scholar 

  • Kocovsky, P. M. & R. F. Carline, 2005. Stream pH as an abiotic gradient influencing distributions of trout in Pennsylvania streams. Transactions of the American Fisheries Society 134: 1299–1312.

    Article  CAS  Google Scholar 

  • Kothandaraman, V., & R. L. Evans, 1972. Use of Air–Water Relationships for Predicting Water Temperature. Illinois State Water Survey, Urbana, Report of Investigation 69

  • Kwak, T. J. & T. F. Waters, 1997. Trout production dynamics and water quality in Minnesota streams. Transactions of the American Fisheries Society 126: 35–48.

    Article  Google Scholar 

  • Larscheid, J. G. & W. A. Hubert, 1992. Factors influencing the size structure of brook trout and brown trout in Southeastern Wyoming mountain streams. North American Journal of Fisheries Management 12: 109–117.

    Article  PubMed  PubMed Central  Google Scholar 

  • Larson, G. L. & S. E. Moore, 1985. Encroachment of exotic rainbow trout into stream populations of native brook trout in the southern Appalachian mountains. Transactions of the American Fisheries Society 114: 195–203.

    Article  Google Scholar 

  • Larson, G. L., S. E. Moore & B. Carter, 1995. Ebb and flow of encroachment by nonnative rainbow trout in a small stream in the southern Appalachian Mountains. Transactions of the American Fisheries Society 124: 613–622.

    Article  Google Scholar 

  • Lenhart, C. F., H. Peterson & J. Nieber, 2011. Increased streamflow in agricultural watersheds of the Midwest: implications for management. Watershed Science Bulletin, spring 2011: 25–31.

    Google Scholar 

  • Lyons, J., J. S. Stewart & M. Mitro, 2010. Predicted effects of climate warming on the distribution of 50 stream fishes in Wisconsin, U.S.A. Journal of Fish Biology 77: 1867–1898.

    Article  CAS  PubMed  Google Scholar 

  • Magoulick, D. D. & M. A. Wilzbach, 1998. Effect of temperature and macrohabitat on interspecific aggression, foraging success, and growth of brook trout and rainbow trout pairs in laboratory streams. Transactions of the American Fisheries Society 127: 708–717.

    Article  Google Scholar 

  • McHugh, P. & P. Budy, 2005. An experimental evaluation of competitive and thermal effects on brown trout (Salmo trutta) and Bonneville cutthroat trout (Oncorhynchus clarkia utah) performance along an altitudinal gradient. Canadian Journal of Fisheries and Aquatic Sciences 62: 2784–2795.

    Article  Google Scholar 

  • McKenna Jr., J. E., M. T. Slattery & K. M. Clifford, 2013. Broad-scale patterns of brook trout responses to introduced brown trout in New York. North American Journal of Fisheries Management 33: 1221–1235.

    Article  Google Scholar 

  • Meisner, J. D., 1990. Effect of climatic warming on the southern margins of the native range of brook trout, Salvelinus fontinalis. Canadian Journal of Fisheries and Aquatic Sciences 47: 1065–1070.

    Article  Google Scholar 

  • Meronek, T. G., P. M. Bouchard, E. R. Buckner, T. M. Burri, K. K. Demmerly, D. C. Hatleli, R. A. Klumb, S. H. Schmidt & D. W. Coble, 1996. A review of fish control projects. North American Journal of Fisheries Management 16: 63–74.

    Article  Google Scholar 

  • Meyer, K. A., J. A. Lamansky Jr. & D. J. Schill, 2006. Evaluation of an unsuccessful brook trout electrofishing removal project in a small Rocky Mountain stream. North American Journal of Fisheries Management 26: 849–860.

    Article  Google Scholar 

  • Mundahl, N. D., 2017. Population dynamics of brown trout in a Minnesota (USA) stream: a 25-year study. River Research and Applications 2017: 1–11.

    Google Scholar 

  • Novinger, D. C. & F. J. Rahel, 2003. Isolation management with artificial barriers as a conservation strategy for cutthroat trout in headwater streams. Conservation Biology 17: 772–781.

    Article  Google Scholar 

  • Novotny, E. V. & H. G. Stefan, 2007. Stream flow in Minnesota: indicator of climate change. Journal of Hydrology 334: 319–333.

    Article  Google Scholar 

  • Öhlund, G., F. Nordwall, E. Degerman & T. Eriksson, 2008. Life history and large-scale habitat use of brown trout (Salmo trutta) and brook trout (Salvelinus fontinalis) – implications for species replacement patterns. Canadian Journal of Fisheries and Aquatic Sciences 65: 633–644.

    Article  Google Scholar 

  • Peterson, D. P., B. E. Rieman, J. B. Dunham, K. D. Fausch & M. K. Young, 2008. Analysis of trade-offs between threats of invasion by nonnative brook trout (Salvelinus fontinalis) and intentional isolation for native westslope cutthroat trout (Oncorhynchus clarkia lewisi). Canadian Journal of Fisheries and Aquatic Sciences 65: 557–573.

    Article  Google Scholar 

  • Quist, M. C. & W. A. Hubert, 2005. Relative effects of biotic and abiotic processes: a test of the biotic-abiotic constraining hypothesis as applied to cutthroat trout. Transactions of the American Fisheries Society 134: 6676–6686.

    Article  Google Scholar 

  • R Core Team, 2018. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0. http://www.R-project.org.

  • Ricker, W. E., 1946. Production and utilization of fish populations. Ecological Monographs 16: 373–391.

    Article  Google Scholar 

  • Rieman, B. E., J. T. Peterson & D. L. Meyers, 2006. Have brook trout (Salvelinus fontinalis) displaced bull trout (Salvelinus confluentus) along longitudinal gradients in central Idaho streams? Canadian Journal of Fisheries and Aquatic Sciences 63: 63–78.

    Article  Google Scholar 

  • Sorensen, P. W., J. R. Cardwell, T. Essington & D. E. Weigel, 1995. Reproductive interactions between sympatric brook and brown trout in a small Minnesota stream. Canadian Journal of Fisheries and Aquatic Sciences 52: 1958–1965.

    Article  Google Scholar 

  • Sotiropoulos, J. C., K. H. Nislow & M. R. Ross, 2006. Brook trout, Salvelinus fontinalis, microhabitat selection and diet under low summer stream flows. Fisheries Management and Ecology 13: 149–155.

    Article  Google Scholar 

  • Stolarski, J. T. & K. J. Hartman, 2008. An evaluation of the precision of fin ray, otolith, and scale age determinations for brook trout. North American Journal of Fisheries Management 28: 1790–1795.

    Article  Google Scholar 

  • Stranko, S. A., R. H. Hilderbrand, R. P. Morgan II, M. W. Staley, A. J. Becker, A. Roseberry-Lincoln, E. S. Perry & P. T. Jacobson, 2008. Brook trout declines with land cover and temperature changes in Maryland. North American Journal of Fisheries Management 28: 1223–1232.

    Article  Google Scholar 

  • Taniguchi, Y., F. J. Rahel, D. C. Novinger & K. G. Gerow, 1998. Temperature mediation of competitive interactions among three fish species that replace each other along longitudinal stream gradients. Canadian Journal of Fisheries and Aquatic Sciences 55: 1894–1901.

    Article  Google Scholar 

  • Thompson, P. D. & F. J. Rahel, 1996. Evaluation of depletion-removal electrofishing of brook trout in small Rocky Mountain streams. North American Journal of Fisheries Management 16: 332–339.

    Article  Google Scholar 

  • Thorn, W. C., C. A. Anderson, W. E. Lorenzen, D. L. Hendrickson & J. W. Wagner, 1997. A review of trout management in Southeast Minnesota streams. North American Journal of Fisheries Management 17: 860–872.

    Article  Google Scholar 

  • Wagner, T., J. T. Deweber, J. Deter & J. A. Sweka, 2013. Landscape-scale evaluation of asymmetric interactions between brown trout and brook trout using two-species occupancy models. Transactions of the American Fisheries Society 142: 353–361.

    Article  Google Scholar 

  • Walsh, J. et al. 2014. Ch. 2: our changing climate. In Melilli, J. M., T. C. Richmond, & G. W. Yohe (eds), Climate change impacts in the United States: the third national climate assessment. U.S. Global Change Research Program: 19–67. https://doi.org/10.7930/j0kw5cxt

  • Waters, T. F., 1977. Secondary production in inland waters. Advances in Ecological Research 10: 91–164.

    Article  Google Scholar 

  • Waters, T. F., 1983. Replacement of brook trout by brown trout over 15 years in a Minnesota stream: production and abundance. Transactions of the American Fisheries Society 112: 137–146.

    Article  Google Scholar 

  • Waters, T. F., 1999. Long-term trout production dynamics in Valley Creek, Minnesota. Transactions of the American Fisheries Society 128: 1151–1162.

    Article  Google Scholar 

  • Wehrly, K. E., M. J. Wiley & P. W. Seelbach, 2003. Classifying regional variation in thermal regime based on stream fish community patterns. Transactions of the American Fisheries Society 132: 18–38.

    Article  Google Scholar 

  • Wehrly, K. E., M. J. Wiley, & P. W. Seelbach, 2006. Influence of landscape features on summer water temperatures in lower Michigan streams. In Hughes, R. M., L. Wang, & P. W. Seelbach, (eds), Landscape influences on stream habitats and biological assemblages. American Fisheries Society, Symposium 48, Bethesda, Maryland: 113-127.

  • Wehrly, K. E., L. Wang & M. Mitro, 2007. Field-based estimates of thermal tolerance limits for trout: incorporating exposure time and temperature fluctuation. Transactions of the American Fisheries Society 136: 365–374.

    Article  Google Scholar 

  • Weigel, D. E. & P. W. Sorensen, 2001. The influence of habitat characteristics on the longitudinal distribution of brook, brown, and rainbow trout in a small Midwestern stream. Journal of Freshwater Ecology 16: 599–613.

    Article  Google Scholar 

Download references

Acknowledgements

Special thanks are due to the numerous MNDNR Fisheries staff who have collected data on East Indian Creek over the last 37 years including Randy Binder, Dan Dieterman, Jason Roloff, Dan Spence, and Kevin Stauffer. Charles Anderson, Rune Knudsen, Michael Hansen, and two anonymous reviewers provided helpful comments on an earlier version of this manuscript. The data were collected as part of the Southeast Minnesota Long-Term Stream Monitoring Program, with support provided by the Minnesota Department of Natural Resources, Section of Fisheries.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. John H. Hoxmeier.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Guest editors: C. E. Adams, C. R. Bronte, M. J. Hansen, R. Knudsen & M. Power / Charr Biology, Ecology and Management

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hoxmeier, R.J.H., Dieterman, D.J. Natural replacement of invasive brown trout by brook charr in an upper Midwestern United States stream. Hydrobiologia 840, 309–317 (2019). https://doi.org/10.1007/s10750-019-3912-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-019-3912-0

Keywords

Navigation