Skip to main content

Advertisement

Log in

Environmental DNA metabarcoding for freshwater bivalves biodiversity assessment: methods and results for the Western Palearctic (European sub-region)

  • FRESHWATER MOLLUSCS
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Freshwater ecosystems are the most vulnerable worldwide and freshwater bivalves rank amongst the most threatened animals in the world. Surveying and monitoring freshwater bivalves are difficult tasks: they are difficult to find, hard to identify (taxonomic expertise is needed), and working underwater is technically challenging. It is therefore crucial to find more efficient methods to survey and monitor these species. Here, we present the first metabarcoding approach for freshwater bivalves and compare environmental DNA (eDNA) and traditional surveys. We describe two sets of primers (for Unionida and Venerida) developed for freshwater bivalves eDNA metabarcoding. These primers have been tested in the field, with about 300 studied sites. Results were compared to freshwater bivalves’ surveys using traditional methods, with eDNA always detecting more species than traditional surveys, especially when Sphaerids were taken into account. While our study initially focused on Western Palearctic freshwater bivalve species, our primers were confronted in silico with available sequences and have proven to be effective at a global scale. The results show that eDNA metabarcoding, with our developed primers, is a remarkable tool allowing for non-invasive surveys, detection of rare and inconspicuous species, absence data and overall freshwater bivalves routine monitoring.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Agrell, I., 1948. The shell morphology of some Swedish unionids as affected by ecological conditions. Arkiv för Zoologi 41: 1–30.

    Google Scholar 

  • Albert, J.S., G. Destouni, S.M. Duke-Sylvester, A. E. Magurran, T. Oberdorff, R. E. Reis, K. O. Winemiller & W. J. Ripple, 2020. Scientists’ warning to humanity on the freshwater biodiversity crisis. Ambio. https://doi.org/10.1007/s13280-020-01318-8.

    Article  PubMed  Google Scholar 

  • Belle, C. C., B. C. Stoeckle & J. Geist, 2019. Taxonomic and geographical representation of freshwater environmental DNA research in aquatic conservation. Aquatic Conservation: Marine and Freshwater Ecosystems. https://doi.org/10.1002/aqc.3208.

    Article  Google Scholar 

  • Bespalaya, Y., I. Bolotov, O. Aksenova, A. Kondakov, M. Gofarov & I. Paltser 2015. Occurrence of a Sphaerium species (Bivalvia: Sphaeriidae) of Nearctic origin in European Arctic Russia (Vaigach Island) indicates an ancient exchange between freshwater faunas across the Arctic. Polar Biology 38:1545–1551.

    Google Scholar 

  • Bij de Vaate, A., A. Klink & P. Paalvast, 2007. Macrozoobenthos in the lower Seine: a survey from the perspective of the European Water Framework Directive. Ecoconsult report: 200703, 121 p.

  • Bij de Vaate, A. & J.-N. Beisel, 2011. Range expansion of the quagga mussel Dreissena rostriformis bugensis (Andrusov, 1897) in western Europe: first observation from France. Aquatic Invasions 6 (Supplement 1): 71−74.

    Google Scholar 

  • Biotope, 2009. Inventaire des mollusques de la vallée de la Meuse. Study Report, BAMEO, 30 p.

  • Boon, P., S. Cooksley, J. Geist, I. Killeen, E. Moorkens & I. Sime, 2019. Developing a standard approach for monitoring freshwater pearl mussel (Margaritifera margaritifera) populations in European rivers. Aquatic Conservation: Marine and Freshwater Ecosystems. https://doi.org/10.1002/aqc.3016.

    Article  Google Scholar 

  • Boyer, F., C. Mercier, A. Bonin, Y. Le Bras, P. Taberlet & E. Coissac, 2016. obitools: a unix-inspired software package for DNA metabarcoding. Molecular Ecology Resources 16: 176–182.

    CAS  PubMed  Google Scholar 

  • Breton, S., H. Doucet-Beaupré, D. Stewart, W. Hoeh & P. Blier, 2007. The unusual system of doubly uniparental inheritance of mtDNA: Isn’t one enough?. Trends in genetics 23: 465–74.

    CAS  PubMed  Google Scholar 

  • Cantera, I., K. Cilleros, A. Valentini, A. Cerdan, T. Dejean, A. Iribar, P. Taberlet, R. Vigouroux & S. Brosse, 2019. Optimizing environmental DNA sampling effort for fish inventories in tropical streams and rivers. Scientific Reports 9 (1): 3085.

    PubMed  PubMed Central  Google Scholar 

  • Charneau, M., G. Barthelemy, C. Berthier, E. Breugnot, S. Dethier & V. Prié, 2019. Première détection d'une population d'Unio crassus sur le bassin de la Charente par ADN environnemental. Colloque "LIFE+ Haute Dronne "préservation de Margaritifera margaritifera et restauration de la continuité écologique de la Haute-Dronne". Novembre 2019.

  • Crooks, G. E., G. Hon, J. M. Chandonia & S. E. Brenner, 2004. WebLogo: a sequence logo generator. Genome research, 14 (6): 1188–1190.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Curole, J. P. & T. D. Kocher, 2005. Evolution of a unique mitotypespecific protein-coding extension of the cytochrome c oxidase II gene in freshwater mussels (Bivalvia: Unionoida). Journal of Molecular Evolution 61: 381–389.

    CAS  PubMed  Google Scholar 

  • Darling, J. A. & A. R. Mahon 2011. From molecules to management: Adopting DNA-based methods for monitoring biological invasions in aquatic environments. Environmental Research 111: 978–988

    CAS  PubMed  Google Scholar 

  • Deagle, B. E., S. N. Jarman, E. Coissac, F. Pompanon & P. Taberlet, 2014. DNA metabarcoding and the cytochrome c oxidase subunit I marker: not a perfect match. Biological Letters 10: 20140562.

    Article  CAS  Google Scholar 

  • De Ventura, L., K. Kopp, K. Seppälä & J. Jokela 2017. Tracing the quagga mussel invasion along the Rhine river system using eDNA markers: early detection and surveillance of invasive zebra and quagga mussels. Management of Biological Invasions 8: 101–112.

    Google Scholar 

  • Deiner, K. & F. Altermatt, 2014. Transport distance of invertebrate environmental DNA in a natural river. PloS One 92): e88786.

    Google Scholar 

  • Dejean, T., A. Valentini, A. Duparc, S. Pellier-Cuit, F. Pompanon, P. Taberlet & C. Miaud, 2011. Persistence of environmental DNA in freshwater ecosystems. PLoS ONE 6, e23398.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dejean, T., A. Valentini, C. Miquel, P. Taberlet, E. Bellemain & C. Miaud, 2012. Improved detection of an alien invasive species through environmental DNA barcoding: the example of the American bullfrog Lithobates catesbeianus. Journal of Applied Ecology 49: 953–959.

    Google Scholar 

  • Dudgeon, D., 2019. Multiple threats imperil freshwater biodiversity in the Anthropocene. Current Biology 29: R960–R967.

    CAS  PubMed  Google Scholar 

  • Dudgeon, D., A. H. Arthington, M. O. Gessner, Z.-I. Kawabata, D. J. Knowler, C. Lévêque, R. J. N Aiman, A.-H. Prieur-Richard, D. Soto, M. L. J. Stiassny & C. A. Sullivan, 2006. Freshwater biodiversity: importance, threats, status and conservation challenges. Biological Reviews 81: 163–182.

    PubMed  Google Scholar 

  • Evans, N. T., B. P. Olds, C. R. Turner, Y. Li, C. L. Jerde, A. R. Mahon, M. E. Pfrender, G. A. Lamberti & D. M. Lodge, 2015. Quantification of mesocosm fish and amphibian species diversity via eDNA metabarcoding. Molecular Ecology Resources. https://doi.org/10.1111/17550998.12433.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ficetola, G. F., C. Miaud, F. Pompanon. & P. Taberlet, 2008. Species detection using environmental DNA from water samples. Biological Letters 4: 423–425.

    Google Scholar 

  • Ficetola, G.F., E. Coissac, S. Zundel, T. Riaz, W. Shehzad, J. Bessiere, P. Taberlet & F. Pompagnon, 2010. An In silico approach for the evaluation of DNA barcodes. BMC Genomics 11, 434.

    PubMed  PubMed Central  Google Scholar 

  • Froufe, E., C. Sobral, A. Teixeira, A. Lopes, R. Sousa, S. Varandas, D. C. Aldridge & M. Lopes-Lima, 2014. Genetic diversity of the pan-European freshwater mussel Anodonta anatina (Bivalvia: Unionoida) based on COI: new insights on the genus phylogeny and implications for its conservation. Aquatic Conservation 24: 561–574.

    Google Scholar 

  • Froufe, E., V. D. Gonçalves, A. Teixeira, R. Sousa, S. Varandas, M. Ghamizi, A. Zieritz & M. Lopes-Lima, 2016a. Who lives where? Molecular and morphometric analyses clarify which Unio species (Unionida, Mollusca) inhabit the Southwestern Palearctic. Organisms Diversity and Evolution 16(3): 597–611.

    Google Scholar 

  • Froufe, E., V. Prié, J. Faria, M. Ghamizi, D. V. Gonçalves, M. E. Gürlek, I. Karaouzas, Ü. Kebapçi, H. Sereflisan, C. Sobral, R. Sousa, A. Teixeira, S. Varandas, S. Zogaris & M. Lopes-Lima 2016b. Phylogeny, phylogeography and evolution in the Mediterranean region: News from a freshwater mussel (Potomida, Unionida). Molecular Phylogenetics and Evolution 100: 322–332.

    PubMed  Google Scholar 

  • Froufe, E., M. Lopes-Lima, N. Riccardi, S. Zaccara, I. Vanetti, J. Lajtner, A. Teixeira, S. Varandas, V. Prié, A. Zieritz, R. Sousa & A. E. Bogan, 2017. Lifting the curtain on the freshwater mussel diversity of the Italian Peninsula and Croatian Adriatic coast. Biodiversity and Conservation 26: 3255–3274.

    Google Scholar 

  • Gargominy, O., V. Prié, J.-M. Bichain, X. Cucherat & B. Fontaine, 2011. Liste de référence annotée des mollusques continentaux de France. MalaCo 7: 307–382.

    Google Scholar 

  • Gargominy, O., L. Léonard, V. Prié & X. Cucherat, 2016. De l’utilité d’un inventaire national. MalaCo, 12 : 67–87.

    Google Scholar 

  • Geist, J., 2010. Strategies for the conservation of endangered freshwater pearl mussels (Margaritifera margaritifera L.): a synthesis of Conservation Genetics and Ecology. Hydrobiologia, 644: 69–88.

    Google Scholar 

  • Gasparini, L., S. Crookes, R. Prosser & R. Hanner, 2020. Detection of freshwater mussels (Unionidae) using environmental DNA in riverine systems. Environmental DNA. https://doi.org/10.1002/edn3.71.

    Article  Google Scholar 

  • Goldberg, C. S., A. Sepulveda, A. Ray, J. Baumgardt & L. P. Waits, 2013. Environmental DNA as a new method for early detection of New Zealand mudsnails (Potamopyrgus antipodarum). Freshwater Science 32: 792–800.

    Google Scholar 

  • Huff S. W., Campbell D., Gustafson D. L., Lydeard C., Altaba C. R. & Giribet G. 2004. Investigations into the phylogenetic relationships of freshwater pearl mussels (Bivalvia: Margaritiferidae) based on molecular data: implications for their taxonomy and biogeography. Journal of Molluscan Studies 70: 379–388.

    Google Scholar 

  • Kelly, R. P., J. A. Port, K. M. Yamahara & L. B. Crowder 2014. Using environmental DNA to census marine fishes in a large mesocosm. PLoS ONE 9, e86175.

    PubMed  PubMed Central  Google Scholar 

  • Khalloufi, N., C. Toledo, A. Machordom, M. Boumaïza & R. Araújo, 2011. The unionids of Tunisia: Taxonomy and phylogenetic relationships, with redescription of Unio ravoisieri (Deshayes, 1847) and U. durieui (Deshayes, 1847). Journal of Molluscan Studies 77: 103–115.

    Google Scholar 

  • Klymus, K. E., C. A. Richter, D. C. Chapman & C. Paukert, 2015. Quantification of eDNA shedding rates from invasive bighead carp Hypophthalmichthys nobilis and silver carp Hypophthalmichthys nobilis. Biological Conservation 183: 77–84.

    Google Scholar 

  • Klymus, K. E., N. T. Marshall & C. A. Stepien, 2017. Environmental DNA (eDNA) metabarcoding assays to detect invasive invertebrate species in the Great Lakes. PLOS ONE: 12(5), e0177643.

    PubMed  PubMed Central  Google Scholar 

  • Lee, T. & D. Ó. Foighil, 2003. Phylogenetic structure of the Sphaeriinae, a global clade of freshwater bivalve molluscs, inferred from nuclear (ITS-1) and mitochondrial (16S) ribosomal gene sequences. Zoological Journal of the Linnean Society 137(2): 245–260.

    Google Scholar 

  • Lopes-Lima, M., U. Kebapçı & D. Van Damme, 2014. Unio crassus. The IUCN Red List of Threatened Species 2014: e.T22736A42465628. https://dx.doi.org/10.2305/IUCN.UK.2014-1.RLTS.T22736A42465628.en. Downloaded on 31 December 2019.

  • Lopes-Lima, M., R. Sousa, J. Geist, D. C. Aldridge, R. Araujo, J. Bergengren, Y. Bespalaya, E. Bódis, L. Burlakova, D. Van Damme, K. Douda, E. Froufe, D. Georgiev, C. Gumpinger, A. Karatayev, Ü. Kebapçi, I. Killeen, J. Lajtner, B. M. Larsen, R. Lauceri, A. Legakis, S. Lois, S. Lundberg, E. Moorkens, G. Motte, K.-O. Nagel, P. Ondina, A. Outeiro, M. Paunovic, V. Prié, T. von Proschwitz, N. Riccardi, M. Rudzīte, M. Rudzītis, C. Scheder, M. Seddon, H. Şereflişan, V. Simić, S. Sokolova, K. Stoeckl, J. Taskinen, A. Teixeira, F. Thielen, T. Trichkova, S. Varandas, H. Vicentini, K. Zajac, T. Zajac & S. Zogaris, 2016. Conservation status of freshwater mussels in Europe: state of the art and future challenges. Biological Reviews 92 (1): 572–607.

    PubMed  Google Scholar 

  • Lopes-Lima, M., E. Froufe, V.T. Do, M. Ghamizi, K.E. Mock, Ü. Kebapçi, O. Klishko, S. Kovitvadhi, U. Kovitvadhi, O.S. Paulo, J.M. Pfeiffer, M. Raley, N. Riccardi, H. Şereflişan, R. Sousa, A. Teixeira, S. Varandas, X. Wu, D.T. Zanatta, A. Zieritz & A.E. Bogan, 2017. Phylogeny of the most species-rich freshwater bivalve family (Bivalvia: Unionida: Unionidae): defining modern subfamilies and tribes. Molecular Phylogenetics and Evolution 106: 174–191.

    PubMed  Google Scholar 

  • Lopes-Lima, M., I. N. Bolotov, V. T. Do, D. C. Aldridge, M. M. Fonseca, H. M. Gan, M. Y. Gofarov, A. V. Kondakov, V. Prié, R. Sousa, S. Varandas, I. Vikhrev, A. Teixeira, R. W. Wu, X. Wu, A. Zieritz, E. Froufe & A. Bogan, 2018. Expansion and systematics redefinition of the most threatened freshwater mussel family, the Margaritiferidae. Molecular Phylogenetics and Evolution 127: 98–118.

    PubMed  Google Scholar 

  • Lydeard, C., R. H. Cowie, W. F. Ponder, A. E. Bogan, P. Bouchet, S. A. Clark, K. S. Cumming, T. J. Frest, O. Gargominy, D. G. Herbert, R. Hershler, K. E. Perez, B. Roth, M. Seddon, E. E. Strong & F. G. Thompson, 2004. The global decline of nonmarine mollusks. BioScience 54: 321–330.

    Google Scholar 

  • Marescaux J., D. P. Molloy, L. Giamberini, C. Albrecht & K. Van Doninck, 2012. First records of the quagga mussel, Dreissena rostriformis bugensis (Andrusov, 1897), in the Meuse River within France. BioInvasions Records 1(4): 273−276.

    Google Scholar 

  • Mioduchowska, M., A. Kaczmarczyk, K. Zajac, T. Zajac & J. Sell, 2016. Gender-associated mitochondrial DNA heteroplasmy in somatic tissues of the endangered freshwater mussel Unio crassus (bivalvia: unionidae): implications for sex identification and phylogeographical studies. Journal of Experimental Zoology 325A: 610–625.

    Google Scholar 

  • Miya M, Y. Sato, T. Fukunaga, T. Sado, J. Y. Poulsen, K. Sato, T. Minamoto, S. Yamamoto, H. Yamanaka, H. Araki, M. Kondoh & W. Iwasaki, 2015. MiFish, a set of universal PCR primers for metabarcoding environmental DNA from fishes: detection of more than 230 subtropical marine species. Royal Society Open Science 2: 150088.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mouthon J. & M. Forcellini, 2017. Genetic evidence of the presence in France of the North American species Euglesa compressa Prime, 1852, (Bivalvia, Sphaeriidae). BioInvasions Records 6 (3): 225–231. https://doi.org/10.3391/bir.2017.6.3.07.

    Article  Google Scholar 

  • Mouthon, J., 2018. Répartition en France des formes actuelle et fossile d'Euglesa pulchella Jenyns, 1832 (Bivalvia, Sphaeriidae), une espèce rare. Folia conchyliologica 45: 3–8.

    Google Scholar 

  • Nagel, K.-O., 1992. Das Schalenwachstum dreier Muschelarten (Bivalvia: Unionidae) in der Schwalm, einem nordhessischen Mittelgebirgsfluβ. Decheniana 145: 165–176.

    Google Scholar 

  • Ortmann, A. E., 1920. Correlation of shape and station in freshwater mussels (Naiades). Proceedings of the American Philosophical Society 59: 268–312.

    Google Scholar 

  • Petkevičiūtė, R., V. Stunžėnas & G. Stanevičiūtė, 2018. Comments on species divergence in the genus Sphaerium (Bivalvia) and phylogenetic affinities of Sphaerium nucleus and S. corneum var. mamillanum based on karyotypes and sequences of 16S and ITS1 rDNA. PLoS ONE 13(1): e0191427.

    PubMed  PubMed Central  Google Scholar 

  • Pigneur, L.-M., J. Marescaux, K. Roland, E. Etoundi, J.-P. Descy & K. Van Doninck, 2011. Phylogeny and androgenesis in the invasive Corbicula clams (Bivalvia, Corbiculidae) in western Europe. BMC Evolutionary Biology 11: 147.

    PubMed  PubMed Central  Google Scholar 

  • Pont, D., M. Rocle, A. Valentini, R. Civade, P. Jean, A. Maire, N. Roset, M. Schabuss, H. Zornig & T. Dejean. Environmental DNA reveals quantitative patterns of fish biodiversity in large rivers despite its downstream transportation. Scientific Reports 8: 10361.

    PubMed  PubMed Central  Google Scholar 

  • Prié, V., 2003. Notes sur les Mollusques du bassin du Lez (Hérault, France). Documents Malacologiques 4: 19–31.

    Google Scholar 

  • Prié, V. 2017. Naïades et autres bivalves d’eau douce de France. Biotope éditions, Mèze ; Publications scientifiques du Muséum, Paris (collection Inventaires et Biodiversité).

  • Prié, V. & Puillandre N. 2014. Molecular phylogeny, taxonomy and distribution of French Unio species (Bivalvia, Unionidae). Hydrobiologia 735 (1): 95–110.

    Google Scholar 

  • Prié, V. & J.-F. Fruget 2017. Heading south: new records of the invasive freshwater quagga mussel Dreissena rostriformis bugensis (Andrusov, 1897) in France and further perspectives. Knowledge and Management of Aquatic Ecosystems 418: 37.

    Google Scholar 

  • Prié, V., N. Puillandre & P. Bouchet, 2012. Bad taxonomy can kill: molecular reevaluation of Unio mancus Lamarck, 1819 (Bivalvia: Unionidae) and its accepted subspecies. Knowledge and Management of Aquatic Ecosystems 405: 08.

    Google Scholar 

  • Prié, V., J. Soler, R. Araujo, X. Cucherat, L. Philippe, N. Legrand, N. Patry, B. Adam, P. Jugé, N. Richard & K. M. Wantzen, 2018. Challenging exploration of troubled waters: ten years' surveys of the giant freshwater pearl mussel Margaritifera auricularia in Europe. Hydrobiologia 818(1): 157–175.

    Google Scholar 

  • R Core Team, 2018. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/.

  • Riaz, T., W. Shehzad, A. Viari, F. Pompanon, P. Taberlet & E. Coissac, 2011. ecoPrimers: inference of new DNA barcode markers from whole genome sequence analysis. Nucleic Acids Research 39: e145–e145.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schnell, I. B., K. Bohmann & M. T. Gilbert, 2015. Tag jumps illuminated – reducing sequence‐to‐sample misidentifications in metabarcoding studies. Molecular Ecology Resources 15: 1289–1303.

    CAS  PubMed  Google Scholar 

  • Sharma, P.P., J.D. Zardus, E.E. Boyle, V.L. Gonzalez, R.M. Jennings, E. McIntyre, W.C. Wheeler, R.J. Etter & G. Giribet, 2013. Into the deep: a phylogenetic approach to the bivalve subclass Protobranchia. Molecular Phylogenetics and Evolution 69 (1): 188–204.

    CAS  PubMed  Google Scholar 

  • Stepien, C. A., I. A. Grigorovich, M. A. Gray, T. J. Sullivan, S. Yerga-Woolwine & G. Kalayci, 2014. Evolutionary, biogeographic, and population genetic relationships of Dreissenid mussels, with revision of component taxa. In: Nalepa, T. F. & D. W. Schloesser (eds), quagga and zebra mussels: biology, impacts, and control, 2 edn. CRC Press, Boca Raton: 403−444.

    Google Scholar 

  • Stoeckle B. C., R. Kuehn & J. Geist, 2016. Environmental DNA as a monitoring tool for the endangered freshwater pearl mussel (Margaritifera margaritifera L.): a substitute for classical monitoring approaches? Aquatic Conservation Marine and Freshwater ecosystems 26 (6): 1120–1129

    Google Scholar 

  • Stoeckle B. C., S. Beggel, A. Cerwenka, E. Motivans, R. Kuehn & J. Geist, 2017. A systematic approach to evaluate the influence of environmental conditions on eDNA detection success in aquatic ecosystems. PLoS ONE 12(12): e0189119.

    PubMed  PubMed Central  Google Scholar 

  • Taberlet, P., E. Coissac, M. Hajibabaei & L. H. Rieseberg, 2012. Environmental DNA. Molecular Ecology 21: 1789–1793.

    CAS  PubMed  Google Scholar 

  • Therriault, T, M. I. Orlova, M. F. Docker, H. J. MacIsaac & D. D. Heath, 2005. Invasion genetics of a freshwater mussel (Dreissena rostriformis bugensis) in eastern Europe: high gene flow and multiple introductions. Heredity 5: 1−8.

    Google Scholar 

  • Thomsen, P. F., J. Kielgast, L. L. Iversen, P. R. Møller, M. Rasmussen & E. Willerslev, 2012. Detection of a diverse marine fish fauna using environmental DNA from seawater samples. PLoS ONE 7, e41732.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Thomsen, P. F. & E. Willerslev, 2015. Environmental DNA – an emerging tool in conservation for monitoring past and present biodiversity. Biological Conservation 183: 4–18.

    Google Scholar 

  • Valentini, A., P. Taberlet, C. Miaud, R. Civade, J. Herder, P. F. Thomsen, E. Bellemain, A. Besnard, E. Coissac, F. Boyer, C. Gaboriaud, P. Jean, N. Poulet, N. Roset, G. H. Copp, P. Geniez, D. Pont, C. Argillier, J.-M. Baudoin, T. Peroux, A. Crivelli, A. Olivier, M. Acqueberge, M. Le Brun, P. Møller, E. Willerslev & T. Dejean, 2016. Next‐generation monitoring of aquatic biodiversity using environmental DNA metabarcoding. Molecular ecology 25 (4): 929–942.

    CAS  PubMed  Google Scholar 

  • Wagih, O., 2017. ggseqlogo: a versatile R package for drawing sequence logos. Bioinformatics. https://doi.org/10.1093/bioinformatics/btx469; https://cran.r-project.org/web/packages/scatterpie/vignettes/scatterpie.html

  • Wagner, A., 2014. Arrivée de Dreissena rostriformis bugensis (Andrusov, 1897) (Mollusca, Bivalvia, Dreissenidae), nouvelle espèce pour la faune d'Alsace. Folia Conchiliologica 28: 19−22.

    Google Scholar 

  • Welter-Schultes, F., 2012. European non-marine molluscs, a guide for species identification. Planet Poster Editions.

  • Wickham, H., 2016. ggplot2: Elegant Graphics for Data Analysis. Springer, New York

    Google Scholar 

  • Zieritz, A. & D. C. Aldridge, 2009. Identification of ecophenotypic trends within three European freshwater mussel species (Bivalvia: Unionoida) using traditional and modern morphometric techniques. Biological Journal of the Linnean Society 98: 814–825.

    Google Scholar 

  • Zieritz, A., J. I. Hoffman, W. Amos & D. C. Aldridge, 2010. Phenotypic plasticity and genetic isolation-by distance in the freshwater mussel Unio pictorum (Mollusca: Unionoida). Evolutionary Ecology 24: 923–938.

    Google Scholar 

  • Zouros, E., A.O. Ball, C. Saavedra & K. R. Freeman, 1994. Mitochondrial DNA inheritance. Nature 368: 818.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The development of the eDNA analysis method for bivalves was carried out jointly by Caracol NGO, Spygen company and Biotope consultancy. The Agence Française pour la Biodiversité and the Direction Régionale de l’Environnement, de l’Aménagement et du Logement d’Occitanie contributed to its financing. The data presented here include work carried out by Biotope and Aquascop consultancies, Caracol NGO, SpyGen, the Compagnie Nationale du Rhône, the Regional Natural Park of Limousin, the Conservatoires d'Espaces Naturels Midi-Pyrénées and Nouvelle Aquitaine, the LIFE + Giant Freshwater Mussel program, GRT Gaz, Voies Navigables de France, EPTB Vilaine, CPIE Loire-Anjou for the main studies. The DREAL Grand Est, Nouvelle Aquitaine, Occitanie and the DDT du Tarn also financed part of the studies. We would also like to thank all those who participated in the sampling and laboratory analysis of the samples. This research was also developed under ConBiomics: the missing approach for the Conservation of Freshwater Bivalves Project Nº NORTE-01-0145-FEDER-030286, co-financed by COMPETE 2020, Portugal 2020 and the European Union through the ERDF, and by Portuguese Foundation for Science and Technology (FCT) through national funds.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincent Prié.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Guest editors: Manuel P. M. Lopes-Lima, Nicoletta Riccardi, Maria Urbanska & Ronaldo G. Sousa / Biology and Conservation of Freshwater Molluscs

Electronic supplementary material

Below is the link to the electronic supplementary material.

Online Resource1: Western Palearctic 16S fragment reference database. Supplementary file1 (XLSX 27 kb)

10750_2020_4260_MOESM2_ESM.xlsx

Online Resource 2: In silico PCR (Ficetola et al. 2010) ran on a collection of all mitochondrial DNA sequences, and all available DNA sequences in release 138 (standard sequences) of the EMBL database. Supplementary file2 (XLSX 126 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prié, V., Valentini, A., Lopes-Lima, M. et al. Environmental DNA metabarcoding for freshwater bivalves biodiversity assessment: methods and results for the Western Palearctic (European sub-region). Hydrobiologia 848, 2931–2950 (2021). https://doi.org/10.1007/s10750-020-04260-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-020-04260-8

Keywords

Navigation