Skip to main content
Log in

The anthropic gradient determines the taxonomic diversity of aquatic insects in Amazonian streams

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Anthropic activities are one of the main drivers of change in the environmental characteristics of streams and the diversity of aquatic macroinvertebrates. We evaluated the influence of an anthropic gradient (varying degrees of impact) on the genera level alpha and beta diversity of the Ephemeroptera, Plecoptera, and Trichoptera (EPT) in 48 eastern Amazonian streams. These insects were sampled using a dipnet, and the anthropic gradient was represented by the activities observed in the channel and the catchment of each stream. We found that increasing anthropic impact reduced the alpha diversity of the EPT. The Total Beta Diversity (BDTotal) showed a moderate degree of variation in streams. The streams with the greatest Local Contribution to Beta Diversity (LCBD) had the lowest alpha diversity of EPT, while the genera with the greatest Species Contribution to Beta Diversity (SCBD) were the most abundant and widely distributed among the streams. Thus, the increase in anthropic impacts reduced the alpha diversity of the EPT and indirectly influenced the uniqueness, emphasizing the importance of using different components of the diversity to understand the effects of anthropic impacts on Amazonian streams.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alemneh, T., A. Ambelu, S. Bahrndorff, S. T Mereta, C. Pertoldi & B. F. Zaitchik, 2017. Modeling the impact of highland settlements on ecological disturbance of streams in Choke Mountain Catchment: Macroinvertebrate assemblages and water quality. Ecological Indicators 73: 452−459.

    Article  Google Scholar 

  • Allan, J. D., 2004. Landscapes and riverscapes: the influence of land use on stream ecosystems. Annual Review of Ecology, Evolution, and Systematics 35: 257−284.

    Article  Google Scholar 

  • Baselga, A., 2010. Partitioning the turnover and nestedness components of beta diversity. Global Ecology and Biogeography 19: 134−143.

    Article  Google Scholar 

  • Beisel, J.−N., P. Usseglio-Polatera & J.−C. Moreteau, 2000. The spatial heterogeneity of a river bottom: a key factor determining macroinvertebrate communities. Hydrobiologia 422/423: 163−171.

    Article  Google Scholar 

  • Bispo, P. C., L. G. Oliveira, V. L. Crisci & M. M. Silva, 2001. A pluviosidade como fator de alteração da entomofauna bentônica (Ephemeroptera, Plecoptera e Trichoptera) em córregos do Planalto Central do Brasil. Acta Limnologica Brasiliensia 13: 1−9.

    Google Scholar 

  • Blanchet, F. G., P. Legendre & D. Borcard, 2008. Forward selection of explanatory variables. Ecology 89: 2623−2632.

    Article  PubMed  Google Scholar 

  • Borcard, D. & P. Legendre, 2002. All-scale spatial analysis of ecological data by means of principal coordinates of neighbour matrices. Ecological Modelling 153: 51−68.

    Article  Google Scholar 

  • Borges, P. P., M. S. Dias, F. R. Carvalho, L. Casatti, P. S. Pompeu, M. Cetra, F. L. Tejerina-Garro, Y. R. Súarez, J. C. Nabout & F. B. Teresa, 2020. Stream fish metacommunity organisation across a Neotropical ecoregion: The role of environment, anthropogenic impact and dispersal-based processes. PLoS ONE 15: e0233733.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bourassa, A. L., L. Fraser & B. E. Beisner, 2017. Benthic macroinvertebrate and fish metacommunity structure in temperate urban streams. Journal of Urban Ecology 3: 1−14.

    Article  Google Scholar 

  • Brand, C. & M. L. Miserendino, 2015. Testing the performance of macroinvertebrate metrics as indicators of changes in biodiversity after pasture conversion in Patagonian Mountain streams. Water, Air, & Soil Pollution 226: 370.

    Article  Google Scholar 

  • Cardoso, M. N., L. B. Calvão, L. F. A. Montag, B. S. Godoy & L. Juen, 2018. Reducing the deleterious effects of logging on Ephemeroptera communities through reduced impact management. Hydrobiologia 823: 191−203.

    Article  Google Scholar 

  • Ceneviva-Bastos, M., D. B. Prates, R. de Mei Romero, P. C. Bispo & L. Casatti, 2017. Trophic guilds of EPT (Ephemeroptera, Plecoptera, and Trichoptera) in three basins of the Brazilian Savanna. Limnologica 63: 11−17.

    Article  Google Scholar 

  • Cribari-Neto, F. & A. Zeileis, 2010. Beta regression in R. Journal of Statistical Software 34: 1−24.

    Article  Google Scholar 

  • Cummins, K. W. & M. J. Klug, 1979. Feeding ecology of stream invertebrates. Annual Review of Ecology and Systematics 10: 147−172.

    Article  Google Scholar 

  • Cunha, E. J. & L. Juen, 2017. Impacts of oil palm plantations on changes in environmental heterogeneity and Heteroptera (Gerromorpha and Nepomorpha) diversity. Journal of Insect Conservation 21: 111−119.

    Article  Google Scholar 

  • Da Silva, P. G., M. I. M. Hernández & J. Heino, 2018. Disentangling the correlates of species and site contributions to beta diversity in dung beetle assemblages. Diversity and Distributions 24: 1674−1686.

    Article  Google Scholar 

  • De Oliveira, A. L. H. & J. L. Nessimian, 2010. Spatial distribution and functional feeding groups of aquatic insect communities in Serra da Bocaina streams, southeastern Brazil. Acta Limnologica Brasiliensia 22: 424−441.

    Article  Google Scholar 

  • De Almeida, C. A., A. C. Coutinho, J. C. D. M. Esquerdo, M. Adami, A. Venturieri, C. G. Diniz, N. Dessay, L. Durieux & A. R. Gomes, 2016. High spatial resolution land use and land cover mapping of the Brazilian Legal Amazon in 2008 using Landsat-5/TM and MODIS data. Acta Amazonica 46: 291−302.

    Article  Google Scholar 

  • De Faria, A. P. J., R. Ligeiro, M. Callisto & L. Juen, 2017. Response of aquatic insect assemblages to the activities of traditional populations in eastern Amazonia. Hydrobiologia 802: 39−51.

    Article  Google Scholar 

  • Dias, G. F. M., A. M. M. de Lima & M. N. S. Santos, 2018. As mudanças no uso e cobertura da terra e o comportamento hidrológico da bacia do rio Capim. Paper do NAEA 390: 1−31.

    Google Scholar 

  • Domínguez, E., C. Molineri, M. L. Pescador, M. D. Hubbard & C. Nieto, 2006. Ephemeroptera of South America. Pensoft Publishers, Sofia-Moscow.

    Google Scholar 

  • Dray, S., P. Legendre & P. R. Peres-Neto, 2006. Spatial modelling: a comprehensive framework for principal coordinate analysis of neighbour matrices (PCNM). Ecological Modelling 196: 483−493.

    Article  Google Scholar 

  • Dray, S., D. Bauman, G. Blanchet, D. Borcard, S. Clappe, G. Guenard, T. Jombart, G. Larocque, P. Legendre, N. Madi & H. H. Wagner, 2018. Adespatial: multivariate multiscale spatial analysis. R package version 0.2−0. [available on internet at https://CRAN.R-project.org/package=adespatial].

  • Eludoyin, A. O., A. T. Ojo, T. O. Ojo & O. O. Awotoye, 2017. Effects of artisanal gold mining activities on soil properties in a part of southwestern Nigeria. Cogent Environmental Science 3: 1305650.

    Article  Google Scholar 

  • Embrapa, 1986. Centro de Pesquisa Agropecuária do Trópico Úmido (Belém, Pará). Laboratório de climatologia: normais climatológicas de Paragominas no período de 1980 a 1988. Embrapa, Belém.

  • Fidelis, L., J. L. Nessimian & N. Hamada, 2008. Distribuição espacial de insetos aquáticos em igarapés de pequena ordem na Amazônia Central. Acta Amazonica 38: 127−134.

    Article  Google Scholar 

  • Fierro, P., C. Bertrán, J. Tapia, E. Hauenstein, F. Peña-Cortés, C. Vergara, C. Cerna & L. Vargas-Chacoff, 2017. Effects of local land-use on riparian vegetation, water quality, and the functional organization of macroinvertebrate assemblages. Science of the Total Environment 609: 724−734.

    Article  CAS  Google Scholar 

  • Genito, D., W. J. Gburek & A. N. Sharpley, 2002. Response of stream macroinvertebrates to agricultural land cover in a small watershed. Journal of Freshwater Ecology 17: 109−119.

    Article  CAS  Google Scholar 

  • Godoy, B. S., A. P. J. Faria, L. Juen, L. Sara & L. G. Oliveira, 2019. Taxonomic sufficiency and effects of environmental and spatial drivers on aquatic insect community. Ecological Indicators 107: 105624.

    Article  Google Scholar 

  • Gower, J. C., 1966. Some distance properties of latent root and vector methods used in multivariate analysis. Biometrika 53: 325−338.

    Article  Google Scholar 

  • Hamada, N. & J. O. Silva, 2014. Ordem Plecoptera. In Hamada, N., J. L. Nessimian & R. B. Querino (eds), Insetos aquáticos na Amazônia brasileira: taxonomia, biologia e ecologia. Editora do INPA, Manaus: 283−288.

    Google Scholar 

  • Heino, J., 2009. Biodiversity of aquatic insects: spatial gradients and environmental correlates of assemblage-level measures at large scales. Freshwater Reviews 2: 1−29.

    Article  Google Scholar 

  • Heino, J. & M. Grönroos, 2017. Exploring species and site contributions to beta diversity in stream insect assemblages. Oecologia 183: 151−160.

    Article  PubMed  Google Scholar 

  • Heino, J., L. M. Bini, J. Andersson, J. Bergsten, U. Bjelke & F. Johansson, 2017. Unravelling the correlates of species richness and ecological uniqueness in a metacommunity of urban pond insects. Ecological Indicators 73: 422−431.

    Article  Google Scholar 

  • Jost, L., 2007. Partitioning diversity into independent alpha and beta components. Ecology 88: 2427−2439.

    Article  PubMed  Google Scholar 

  • Jun, Y.−C., N.−Y. Kim, S.−J. Kwon, S.−C. Han, In−C. Hwang, J.−H. Park, D.−H. Won, M.−S. Byun, H.−Y. Kong, J.−E. Lee & S.−J. Hwang, 2011. Effects of land use on benthic macroinvertebrate communities: comparison of two mountain streams in Korea. Annales de Limnologie - International Journal of Limnology 47: 35−49.

    Article  Google Scholar 

  • Kaufmann, P. R., P. Levine, E. G. Robison, C. Seeliger & D. V. Peck, 1999. Quantifying Physical Habitat in Wadeable Streams. EPA/620/R-99/003. U.S. Environmental Protection Agency, Washington, DC.

  • Kong, H., M. Chevalier, P. Laffaille & S. Lek, 2017. Spatio-temporal variation of fish taxonomic composition in a South-East Asian flood-pulse system. PLoS ONE 12: e0174582.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lande, R., 1996. Statistics and partitioning of species diversity, and similarity among multiple communities. Oikos 76: 5−13.

    Article  Google Scholar 

  • Landeiro, V. L., B. Franz, J. Heino, T. Siqueira & L. M. Bini, 2018. Species‐poor and low‐lying sites are more ecologically unique in a hyperdiverse Amazon region: evidence from multiple taxonomic groups. Diversity and Distributions 24: 966−977.

    Article  Google Scholar 

  • Leão, H., T. Siqueira, N. R. Torres & L. F. A. Montag, 2020. Ecological uniqueness of fish communities from streams in modified landscapes of Eastern Amazonia. Ecological Indicators 111: 106039.

    Article  Google Scholar 

  • Legendre, P. & M. De Cáceres, 2013. Beta diversity as the variance of community data: dissimilarity coefficients and partitioning. Ecology Letters 16: 951−963.

    Article  PubMed  Google Scholar 

  • Li, Z., X. Jiang, J. Wang, X. Meng, J. Heino & Z. Xie, 2019. Multiple facets of stream macroinvertebrate alpha diversity are driven by different ecological factors across an extensive altitudinal gradient. Ecology and Evolution 9: 1306−1322.

    Article  PubMed  PubMed Central  Google Scholar 

  • Li, F., J. D. Tonkin & P. Haase, 2020a. Local contribution to beta diversity is negatively linked with community-wide dispersal capacity in stream invertebrate communities. Ecological Indicators 108: 105715.

    Article  Google Scholar 

  • Li, B., W. Tan, L. Wen, X. Zhao, B. Peng, J. Yang, C. Lu, Y. Wang & G. Lei, G., 2020b. Anthropogenic habitat alternation significantly decreases α-and β-diversity of benthopelagic metacommunity in a large floodplain lake. Hydrobiologia 847: 293−307.

    Article  CAS  Google Scholar 

  • Ligeiro, R., R. M. Hughes, P. R. Kaufmann, D. R. Macedo, K. R. Firmiano, W. R. Ferreira, D. Oliveira, A. S. Melo & M. Callisto, 2013. Defining quantitative stream disturbance gradients and the additive role of habitat variation to explain macroinvertebrate taxa richness. Ecological Indicators 25: 45−57.

    Article  Google Scholar 

  • López, T. D. M., T. M. Aide & F. N. Scatena, 1998. The effect of land use on soil erosion in the Guadiana watershed in Puerto Rico. Caribbean Journal of Science 34: 298−307.

    Google Scholar 

  • Lui, G. H. & S. M. G. Molina, 2009. Ocupação humana e transformação das paisagens na Amazônia brasileira. Amazônica 1: 200−228.

    Google Scholar 

  • Luiza-Andrade, A., L. S. Brasil, N. L. Benone, Y. Shimano, A. P. J. Farias, L. F. Montag, S. Dolédec & L. Juen, 2017. Influence of oil palm monoculture on the taxonomic and functional composition of aquatic insect communities in eastern Brazilian Amazonia. Ecological Indicators 82: 478−483.

    Article  Google Scholar 

  • Malmqvist, B. & S. Rundle, 2002. Threats to the running water ecosystems of the world. Environmental Conservation 29: 134−153.

    Article  Google Scholar 

  • Masese, F. O., P. O. Raburu & M. Muchiri, 2009. A preliminary benthic macroinvertebrate index of biotic integrity (B-IBI) for monitoring the Moiben River, Lake Victoria Basin, Kenya. African Journal of Aquatic Science 34: 1−14.

    Article  CAS  Google Scholar 

  • Mboye, B. R., S. F. Menbohan, J. D. Mbega & E. B. B. Ngon, 2018. Influence of the granulometric parameters on the Diversity and Distribution of Benthic Macroinvertebrates in the Mabounié Watershed (Central West Gabon). International Journal of Advanced Research in Biological Sciences 5: 252−270.

    Article  Google Scholar 

  • Mimouni, El.−A., B. Pinel-Alloul & B. E. Beisner, 2015. Assessing aquatic biodiversity of zooplankton communities in an urban landscape. Urban Ecosystems 18: 1353−1372.

    Article  Google Scholar 

  • Miserendino, M. L. & C. I. Masi, 2010. The effects of land use on environmental features and functional organization of macroinvertebrate communities in Patagonian low order streams. Ecological Indicators 10: 311−319.

    Article  CAS  Google Scholar 

  • Montag, L. F. A., K. O. Winemiller, F. W. Keppeler, H. Leão, N. L. Benone, N. R. Torres, B. S. Prudente, T. O. Begot, L. M. Bower, D. E. Saenz, E. O. Lopez-Delgado, Y. Quintana, D. J. Hoeinghaus & L. Juen, 2019. Land cover, riparian zones and instream habitat influence stream fish assemblages in the eastern Amazon. Ecology of Freshwater Fish 28: 317−329.

    Article  Google Scholar 

  • Moral, R. A., J. Hinde & C. G. B. Demétrio, 2017. Half-normal plots and overdispersed models in R: the hnp package. Journal of Statistical Software 81: 1−23.

    Article  Google Scholar 

  • Myers, N., R. A. Mittermeier, C. G. Mittermeier, G. A. Da Fonseca & J. Kent, 2000. Biodiversity hotspots for conservation priorities. Nature 403: 853.

    Article  CAS  Google Scholar 

  • Nogueira, D. S., H. S. R. Cabette & L. Juen, 2011. Estrutura e composição da comunidade de Trichoptera (Insecta) de rios e áreas alagadas da bacia do rio Suiá-Miçú, Mato Grosso, Brasil. Iheringia, Série Zoologia 101: 173−180.

    Article  Google Scholar 

  • Oksanen, J., F. G. Blanchet, M. Friendly, R. Kindt, P. Legendre, D. McGlinn, P. R. Minchin, R. B. O'Hara, G. L. Simpson, P. Solymos, M. H. H. Stevens, E. Szoecs & H. Wagner, 2019. Vegan: community ecology package. R package version 2.5−6. [available on internet at https://CRAN.R-project.org/package=vegan].

  • Pajunen, V., M. Luoto & J. Soininen, 2017. Unravelling direct and indirect effects of hierarchical factors driving microbial stream communities. Journal of Biogeography 44: 2376−2385.

    Article  Google Scholar 

  • Peck, D. V., A. T. Herlihy, B. H. Hill, R. M. Hughes, P. R. Kaufmann, D. J. Klemm, J. M. Lazorchak, F. H. McCormick, S. A. Peterson, P. L. Ringold, T. Magee & M. R. Cappaert, 2006. Environmental Monitoring and Assessment Program - Surface Waters: Western Pilot Study: Field Operations Manual for Wadeable Streams. EPA 600/R-06/003. U.S. Environmental Protection Agency, Office of Research and Development, Washington, DC.

  • Peel, M. C., B. L. Finlayson & T. A. McMahon, 2007. Updated world map of the Köppen-Geiger climate classification. Hydrology and Earth System Sciences 11: 1633−1644.

    Article  Google Scholar 

  • Pes, A. M., A. P. M. Santos, P. Barcelos-Silva & L. M. Camargos, 2014. Ordem Trichoptera. In Hamada, N., J. L. Nessimian & R. B. Querino (eds), Insetos Aquáticos na Amazônia Brasileira: taxonomia, biologia e ecologia. Editora do Inpa, Manaus: 391−434.

    Google Scholar 

  • Pinto, A., P. Amaral, C. S. Júnior, A. Veríssimo, R. Salomão, G. Gomes & C. Balieiro, 2009. Diagnóstico Socioeconômico e Florestal do Município de Paragominas. Imazon, Belém.

    Google Scholar 

  • Poff, N. L., 1997. Landscape filters and species traits: towards mechanistic understanding and prediction in stream ecology. Journal of the North American Benthological Society 16: 391−409.

    Article  Google Scholar 

  • Poff, N. L. & J. V. Ward, 1990. Physical habitat template of lotic systems: recovery in the context of historical pattern of spatiotemporal heterogeneity. Environmental Management 14: 629−645.

    Article  Google Scholar 

  • R Core Team, 2018. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria [available on internet at https://www.R-project.org/].

  • Ramezani, J., A. Akbaripasand, G. P. Closs & C. D. Matthaei, 2016. In-stream water quality, invertebrate and fish community health across a gradient of dairy farming prevalence in a New Zealand river catchment. Limnologica 61: 14−28.

    Article  CAS  Google Scholar 

  • Rocha, M. P., L. M. Bini, S. Domisch, K. T. Tolonen, J. Jyrkänkallio‐Mikkola, J. Soininen, J. Hjort & J. Heino, 2018. Local environment and space drive multiple facets of stream macroinvertebrate beta diversity. Journal of Biogeography 45: 2744−2754.

    Article  Google Scholar 

  • Salles, F. F. & E. Domínguez, 2012. Systematics and Phylogeny of Ulmeritus-Ulmeritoides revisited (Ephemeroptera: Leptophlebiidae). Zootaxa 3571: 49−65.

    Article  Google Scholar 

  • Salles, F. F. & M. M. Lima, 2014. Chave interativa para identificação dos gêneros de Leptophlebiidae (Ephemeroptera) registrados para o Brasil. [available on internet at http://www.ephemeroptera.com.br].

  • Salles, F. F., J. M. C. Nascimento, P. V. Cruz, R. Boldrini & E. L. L. Belmont, 2014. Ordem Ephemeroptera. In Hamada, N., J. L. Nessimian & R. B. Querino (eds), Insetos Aquáticos na Amazônia Brasileira: taxonomia, biologia e ecologia. Editora do INPA, Manaus: 193−216.

    Google Scholar 

  • Shimano, Y., M. Cardoso & L. Juen, 2018. Ecological studies of mayflies (Insecta, Ephemeroptera): can sampling effort be reduced without losing essential taxonomic and ecological information?. Acta Amazonica 48: 137−145.

    Article  Google Scholar 

  • Siegloch, A. E., A. L. L. da Silva, P. G. da Silva & M. I. M. Hernández, 2018. Local and regional effects structuring aquatic insect assemblages at multiple spatial scales in a Mainland-Island region of the Atlantic Forest. Hydrobiologia 805: 61−73.

    Article  Google Scholar 

  • Silva, L. F. R., F. S. Machado, D. L. M. C. Resende & U. G. Neiss, 2018. Immature Odonata community in streams: diversity, season variation and habitat preference in different levels of degradation. North-Western Journal of Zoology 14: 232−236.

    Google Scholar 

  • Simões, N. R., A. H. Nunes, J. D. Dias, F. A. Lansac-Tôha, L. F. M. Velho & C. C. Bonecker, 2015. Impact of reservoirs on zooplankton diversity and implications for the conservation of natural aquatic environments. Hydrobiologia 758: 3−17.

    Article  Google Scholar 

  • Siqueira, T., C. G.−L. T. Lacerda & V. S. Saito, 2015. How does landscape modification induce biological homogenization in Tropical stream metacommunities?. Biotropica 47: 509−516.

    Article  Google Scholar 

  • Sor, R., P. Legendre & S. Lek, 2018. Uniqueness of sampling site contributions to the total variance of macroinvertebrate communities in the Lower Mekong Basin. Ecological Indicators 84: 425−432.

    Article  Google Scholar 

  • Strahler, A. N., 1957. Quantitative analysis of watershed geomorphology. Transactions American Geophysical Union 38: 913−920.

    Article  Google Scholar 

  • Strayer, D. L. & D. Dudgeon, 2010. Freshwater biodiversity conservation: recent progress and future challenges. Journal of the North American Benthological Society 29: 344−358.

    Article  Google Scholar 

  • Szabó, B., E. Lengyel, J. Padisák & C. Stenger-Kovács, 2019. Benthic diatom metacommunity across small freshwater lakes: driving mechanisms, β-diversity and ecological uniqueness. Hydrobiologia 828: 183−198.

    Article  Google Scholar 

  • Taniwaki, R. H., C. C. Cassiano, A. A. Fransozi, K. V. Vásquez, R. G. Posada, G. V. Velásquez & S. F. B. Ferraz, 2019. Effects of land-use changes on structural characteristics of tropical high-altitude Andean headwater streams. Limnologica 74: 1−7.

    Article  CAS  Google Scholar 

  • Teittinen, A., J. Wang, S. Strömgård & J. Soininen, 2017. Local and geographical factors jointly drive elevational patterns in three microbial groups across subarctic ponds. Global Ecology and Biogeography 26: 973−982.

    Article  Google Scholar 

  • Tonkin, J. D., J. Heino, A. Sundermann, P. Haase & S. C. Jähnig, 2016. Context dependency in biodiversity patterns of central German stream metacommunities. Freshwater Biology 61: 607−620.

    Article  Google Scholar 

  • Törnblom, J., P. Angelstam, E. Degerman, L. Henrikson, T. Edman & J. Temnerud, 2011. Catchment land cover as a proxy for macroinvertebrate assemblage structure in Carpathian Mountain streams. Hydrobiologia 673: 153−168.

    Article  Google Scholar 

  • Veech, J. A., K. S. Summerville, T. O. Crist & J. C. Gering, 2002. The additive partitioning of species diversity: recent revival of an old idea. Oikos 99: 3−9.

    Article  Google Scholar 

  • Venables, W. N. & B. D. Ripley, 2002. Modern Applied Statistics with S. Springer, New York.

    Book  Google Scholar 

  • Vilmi, A., S. M. Karjalainen & J. Heino, 2017. Ecological uniqueness of stream and lake diatom communities shows different macroecological patterns. Diversity and Distributions 23: 1042−1053.

    Article  Google Scholar 

  • Whittaker, R. H., 1960. Vegetation of the Siskiyou Mountains, Oregon and California. Ecological Monographs 30: 279−338.

    Article  Google Scholar 

  • Whittaker, R. H., 1972. Evolution and measurement of species diversity. Taxon 21: 213−251.

    Article  Google Scholar 

  • Zuur, A. F., E. N. Ieno, N. J. Walker, A. A. Saveliev & G. M. Smith, 2009. Mixed effects models and extensions in ecology with R. Springer, New York.

    Book  Google Scholar 

Download references

Acknowledgements

We thank Cikel LTDA, 33 Forest, Instituto Floresta Tropical (IFT), Biodiversity Research Consortium Brazil-Norway (BRC), and the Hydro Alunorte Company for financing the present study and for providing logistical support. We also thank the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) for financing the projects “Influência dos diferentes tipos de uso do solo sobre a biodiversidade na Amazônia Oriental” (process 449314/2014-2), “Tempo de resiliência das comunidades aquáticas após o corte seletivo de madeira na Amazônia Oriental” (process 481015/2011-6) and the Hydro Paragominas Company for supporting the research project “Monitoring the Aquatic Biota of Streams in Areas of Paragominas Mining SA, Pará, Brazil” (process 011) through the BRC. This article is number BRC0028 in the publication series of the BRC.  We are also grateful to the Fundação de Amparo e Desenvolvimento da Pesquisa (FADESP) for granting a scholarship to CKSP; to BRC and the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) for granting the scholarship to APJF (process 88882.176756/2018-01) and to CNPq for granting a scholarship to LBC (process 154761/2018-4), as well as for a research productivity fellowship to LJ (process 304710/2019-9). We are also grateful to CAPES, through PROCAD-AMAZONIA/CAPES, for funding a senior internship for LJ to conduct research at the University of Florida (process 88881.474457/2020-01). Finally, we thank the Pró-Reitoria de Pesquisa e Pós-Graduação (PROPESP) at UFPA (Edital 01/2018) for funding the revision of this manuscript into English.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by CKSP, APJF and LBC. The first draft of the manuscript was written by CKSP and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Carina Kaory Sasahara de Paiva.

Additional information

Handling editor: Marcelo S. Moretti

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Electronic supplementary material 1 (DOCX 37 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Paiva, C.K.S., Faria, A.P.J., Calvão, L.B. et al. The anthropic gradient determines the taxonomic diversity of aquatic insects in Amazonian streams. Hydrobiologia 848, 1073–1085 (2021). https://doi.org/10.1007/s10750-021-04515-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-021-04515-y

Keywords

Navigation