Skip to main content

Advertisement

Log in

A multi-approach study to reveal eel life-history traits in an obstructed catchment before dam removal

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

River fragmentation is expected to impact not only movement patterns and distribution of eels within catchment, but also their life-history traits. Here, we used otolith multi-elemental signatures to reconstruct life sequences of European silver eels within an obstructed catchment, just before the removal of hydropower dams. Beyond providing an initial state, we hypothesized that otolith signatures can provide crucial information on the way eels use the watershed. Indeed, their spatial distribution is expected to shape life-history traits, including condition coefficient, trophic level, growth rate, or infection by metazoan parasites. While Sr:Ca and Ba:Ca ratios were complementary in tracing fish movements between freshwater and estuary, the Ba:Ca variations allowed to discriminate three freshwater sectors. The eels assigned to the midstream sector were more mobile and exhibited lower growth rates, probably in response to higher competition at the vicinity of dams. While most eels are currently produced by downstream and midstream sectors, eels assigned to upper reaches of connected tributaries generally display higher richness in native parasite and higher body condition and lipid reserve, known to promote the success of migration and reproduction. In the near future, the dam removals will represent an outstanding experimental framework for evaluating impacts of catchment reconnection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  • Acou, A., P. Boury, P. Laffaille, A. J. Crivelli & E. Feunteun, 2005. Towards a standardized characterization of the potentially migrating silver European eel (Anguilla anguilla, L.). Archiv Für Hydrobiologie 164: 237–255.

    Google Scholar 

  • Acou, A., G. Gaelle, P. Laffaille, E. Feunteun, J. M. Casselman & D. K. Cairns, 2009. Differential production and condition indices of premigrant eels in two small Atlantic coastal catchments of France. American Fisheries Society Symposium 58: 157–174.

    Google Scholar 

  • Acou, A., L. Virag, E. Reveillac, C. Boulenger, & E. Feunteun, 2013. Comment, à partir d’un seul otolithe, âger une anguille sans exclure d’autres analyses? Colloque national de Sclérochronologie, Rennes, 2au 4 juillet 2013.

  • Amilhat, E., G. Fazio, G. Simon, M. Manetti, S. Paris, L. Delahaut, H. Farrugio, R. Lecomte-Finiger, P. Sasal & E. Faliex, 2014. Silver European eels health in Mediterranean habitats. Ecology of Freshwater Fish 23: 49–64.

    Google Scholar 

  • Aroua, S., M. Schmitz, S. Baloche, B. Vidal, K. Rousseau & S. Dufour, 2005. Endocrine evidence that silvering, a secondary metamorphosis in the eel, is a pubertal rather than a metamorphic event. Neuroendocrinology 82: 221–232.

    CAS  PubMed  Google Scholar 

  • Bates, D., M. Mächler, B. Bolker, & S. Walker, 2014. Fitting linear mixed-effects models using lme4. arXiv preprint arXiv:1406.5823.

  • Belletti, B., C. G. de Leaniz, J. Jones, S. Bizzi, L. Börger, G. Segura, A. Castelletti, W. Van de Bund, K. Aarestrup & J. Barry, 2020. More than one million barriers fragment Europe’s rivers. Nature 588: 436–441.

    CAS  PubMed  Google Scholar 

  • Belpaire, C. G. J., G. Goemans, C. Geeraerts, P. Quataert, K. Parmentier, P. Hagel & J. De Boer, 2009. Decreasing eel stocks: survival of the fattest? Ecology of Freshwater Fish 18: 197–214.

    Google Scholar 

  • Benajiba, M. H., & A. Marques, 1993. The alternation of actinomyxidian and myxosporidian sporal forms in the development of Myxidium giardi (parasite of Anguilla anguilla) through oligochaetes. Bulletin of the European Association of Fish Pathologists 13:100–103.

  • Ben-Shachar, M. S., D. Lüdecke & D. Makowski, 2020. effectsize: estimation of effect size indices and standardized parameters. Journal of Open Source Software 5: 2815.

    Google Scholar 

  • Boulenger, C., A. Acou, O. Gimenez, F. Charrier, J. Tremblay & E. Feunteun, 2016a. Factors determining survival of European eels in two unexploited sub-populations. Freshwater Biology 61: 947–962.

    Google Scholar 

  • Boulenger, C., A. J. Crivelli, F. Charrier, J. Roussel, E. Feunteun & A. Acou, 2016b. Difference in factors explaining growth rate variability in European eel subpopulations: the possible role of habitat carrying capacity. Ecology of Freshwater Fish 25: 281–294.

    Google Scholar 

  • Brown, A. F., J. C. Chubb & C. J. Veltkamp, 1986. A key to the species of Acanthocephala parasitic in British freshwater fishes. Journal of Fish Biology 28: 327–334.

    Google Scholar 

  • Bush, A. O., K. D. Lafferty, J. M. Lotz & A. M. Shostak, 1997. Parasitology meets ecology on its own terms: Margolis et al. The Journal of Parasitology 83: 575–583.

    CAS  PubMed  Google Scholar 

  • Cairns, D. K., D. A. Secor, W. E. Morrison & J. A. Hallett, 2009. Salinity-linked growth in anguillid eels and the paradox of temperate-zone catadromy. Journal of Fish Biology 74: 2094–2114.

    CAS  PubMed  Google Scholar 

  • Campana, S. E., 1999. Chemistry and composition of fish otoliths: pathways, mechanisms and applications. Marine Ecology Progress Series 188: 263–297.

    CAS  Google Scholar 

  • Clevestam, P. D., M. Ogonowski, N. B. Sjöberg & H. Wickström, 2011. Too short to spawn? Implications of small body size and swimming distance on successful migration and maturation of the European eel Anguilla anguilla. Journal of Fish Biology 78: 1073–1089.

    CAS  PubMed  Google Scholar 

  • Colombo, G., G. Grandi & R. Rossi, 1984. Gonad differentiation and body growth in Anguilla anguilla L. Journal of Fish Biology 24: 215–228.

    Google Scholar 

  • Costa, J. L., I. Domingos, C. A. Assis, P. R. Almeida, F. Moreira, E. Feunteun & M. J. Costa, 2008. Comparative ecology of the European eel, Anguilla anguilla (L., 1758), in a large Iberian river. Environmental Biology of Fishes 81: 421.

    Google Scholar 

  • Cucherousset, J., A. Acou, S. Blanchet, J. R. Britton, W. R. C. Beaumont & R. E. Gozlan, 2011. Fitness consequences of individual specialisation in resource use and trophic morphology in European eels. Oecologia 167: 75–84.

    PubMed  Google Scholar 

  • Daverat, F. & J. Tomas, 2006. Tactics and demographic attributes in the European eel Anguilla anguilla in the Gironde watershed, SW France. Marine Ecology Progress Series 307: 247–257.

    Google Scholar 

  • Daverat, F., J. Tomas, M. Lahaye, M. Palmer & P. Elie, 2005. Tracking continental habitat shifts of eels using otolith Sr/Ca ratios: validation and application to the coastal, estuarine and riverine eels of the Gironde–Garonne–Dordogne watershed. Marine and Freshwater Research 56: 619–627.

    CAS  Google Scholar 

  • Daverat, F., K. E. Limburg, I. Thibault, J.-C. Shiao, J. J. Dodson, F. Caron, W.-N. Tzeng, Y. Iizuka & H. Wickström, 2006. Phenotypic plasticity of habitat use by three temperate eel species, Anguilla anguilla, A. japonica and A. rostrata. Marine Ecology Progress Series 308: 231–241.

    Google Scholar 

  • Daverat, F., L. Beaulaton, R. Poole, P. Lambert, H. Wickström, J. Andersson, M. Aprahamian, B. Hizem, P. Elie, S. Yalçın-Özdilek, et al., 2012. One century of eel growth: changes and implications. Ecology of Freshwater Fish 21: 325–336.

    Google Scholar 

  • Drouineau, H., C. Carter, M. Rambonilaza, G. Beaufaron, G. Bouleau, A. Gassiat, P. Lambert, S. le Floch, S. Tétard & E. de Oliveira, 2018. River continuity restoration and diadromous fishes: much more than an ecological issue. Environmental Management 61: 671–686.

    CAS  PubMed  Google Scholar 

  • Druet M., P. Rault, A. Acou, D. Azam, A. Bardonnet, G. Evanno, E. Feunteun, E. Lasne, S. Launey, A. Lizé et al. 2021. Dispersion et (re)colonisation du cours de la Sélune et de ses affluents: terminer un état de référence pour les poissons migrateurs amphihalins et anticiper l’expansion spatiale de l’écrevisse de Californie. Rapport final des travaux liés à la convention 1078068. Agence de l’Eau Seine-Normandie: 30 p.

  • Durif, C. M. F., F. Travade, J. Rives, P. Elie & C. Gosset, 2008. Relationship between locomotor activity, environmental factors, and timing of the spawning migration in the European eel, Anguilla anguilla. Aquatic Living Ressources 21: 163–170.

    Google Scholar 

  • Durif, C. M., O. H. Diserud, O. T. Sandlund, E. B. Thorstad, R. Poole, K. Bergesen, R. H. Escobar-Lux, S. Shema & L. A. Vøllestad, 2020. Age of European silver eels during a period of declining abundance in Norway. Ecology and Evolution 10(11): 4801–4815.

    PubMed  PubMed Central  Google Scholar 

  • Elsdon, T. S. & B. M. Gillanders, 2005. Alternative life-history patterns of estuarine fish: barium in otoliths elucidates freshwater residency. Canadian Journal of Fisheries and Aquatic Sciences 62(5): 1143–1152.

    CAS  Google Scholar 

  • Fablet, R., F. Daverat & H. . De. . Pontual, 2007. Unsupervised Bayesian reconstruction of individual life histories from otolith signatures: case study of Sr: Ca transects of European eel (Anguilla anguilla) otoliths. Canadian Journal of Fisheries and Aquatic Sciences 64: 152–165.

    CAS  Google Scholar 

  • Feunteun, E., A. Acou, J. Guillouët, P. Laffaille & A. Legault, 1998. Spatial distribution of an eel population (Anguilla anguilla L.) in a small coastal catchment of Northern Brittany (France). Consequences of hydraulic works. Bulletin Français De La Pêche Et De La Pisciculture 349: 129–139.

    Google Scholar 

  • Feunteun E., P. Laffaille, T. Robinet, C. Briand, A. Baisez, J.-M. Olivier, & A. Acou 2003. A review of upstream migration and movements in inland waters by anguillid eels: toward a general theory. In Eel biology ed. Springer; 191–213.

  • Forget, G., J.-L. Baglinière, F. Marchand, A. Richard & M. Nevoux, 2018. A new method to estimate habitat potential for Atlantic salmon (Salmo salar): predicting the influence of dam removal on the Sélune River (France) as a case study. ICES Journal of Marine Science 75: 2172–2181.

    Google Scholar 

  • Fomena, A. & G. Bouix, 1997. Myxosporea (Protozoa: Myxozoa) of freshwater fishes in Africa: keys to genera and species. Systematic Parasitology 37: 161–178.

    Google Scholar 

  • Fulton T. W. 1904. The rate of growth of fishes. In Twenty-second Annual Report of the fishery board of Scotland. ed. Fishery Board for Scotland, Glasgow. pp. 141–241.

  • Geeraerts, C. & C. Belpaire, 2010. The effects of contaminants in European eel: a review. Ecotoxicology 19: 239–266.

    CAS  PubMed  Google Scholar 

  • Geffroy, B. & A. Bardonnet, 2016. Sex differentiation and sex determination in eels: consequences for management. Fish and Fisheries 17: 375–398.

    Google Scholar 

  • Gérard, C., T. Trancart, E. Amilhat, E. Faliex, L. Virag, E. Feunteun & A. Acou, 2013. Influence of introduced vs native parasites on the body condition of migrant silver eels. Parasite 20: 38.

    PubMed  PubMed Central  Google Scholar 

  • Golvan Y. J. 1969. Systématique des Acanthocéphales (Acanthocephala Rudolphi 1801). Mémoires du Museum National d'Histoire Naturelle 57, Paris

  • Harrison, A. J., A. M. Walker, A. C. Pinder, C. Briand & M. W. Aprahamian, 2014. A review of glass eel migratory behaviour, sampling techniques and abundance estimates in estuaries: implications for assessing recruitment, local production and exploitation. Reviews in Fish Biology and Fisheries 24: 967–983.

    Google Scholar 

  • Hitt, N. P., S. Eyler & J. E. B. Wofford, 2012. Dam removal increases American eel abundance in distant headwater streams. Transactions of the American Fisheries Society 141: 1171–1179.

    Google Scholar 

  • Hudson, P. J., A. P. Dobson & K. D. Lafferty, 2006. Is a healthy ecosystem one that is rich in parasites? Trends in Ecology & Evolution 21: 381–385.

    Google Scholar 

  • Hüssy, K., K. E. Limburg, H. de Pontual, O. R. B. Thomas, P. K. Cook, Y. Heimbrand, M. Blass & A. M. Sturrock, 2020. Trace element patterns in otoliths: the role of biomineralization. Reviews in Fisheries Science & Aquaculture 29: 1–33.

    Google Scholar 

  • Jakob, E., R. Hanel, S. Klimpel & K. Zumholz, 2008. Salinity dependence of parasite infestation in the European eel Anguilla anguilla in northern Germany. ICES Journal of Marine Science 66: 358–366.

    Google Scholar 

  • Jessop, B. M., 2010. Geographic effects on American eel (Anguilla rostrata) life history characteristics and strategies. Canadian Journal of Fisheries and Aquatic Sciences 67: 326–346.

    Google Scholar 

  • Kaifu, K., M. J. Miller, T. Yada, J. Aoyama, I. Washitani & K. Tsukamoto, 2013. Growth differences of Japanese eels Anguilla japonica between fresh and brackish water habitats in relation to annual food consumption in the Kojima Bay-Asahi River system, Japan. Ecology of Freshwater Fish 22: 127–136.

    Google Scholar 

  • Kennedy, C. R., P. Nie, J. Kaspers, & J. Paulisse, 1992. Are eels (Anguilla anguilla L.) planktonic feeders? Evidence from parasite communities. Journal of Fish Biology 41(4):567–580. https://doi.org/10.1111/j.1095-8649.1992.tb02684.x

  • Khalil, L. F., A. Jones & R. A. Bray, 1994. Keys to the Cestode parasites of vertebrates, CAB International, Wallingford:, 235.

    Google Scholar 

  • Køie, M., 1988. Parasites in European eel Anguilla Anguilla (L.) from danish freshwater brackishand marine localities. Ophelia 29: 93–118.

    Google Scholar 

  • Laffaille, P., E. Feunteun, A. Baisez, T. Robinet, A. Acou, A. Legault & S. Lek, 2003. Spatial organisation of European eel (Anguilla anguilla L.) in a small catchment. Ecology of Freshwater Fish 12: 254–264.

    Google Scholar 

  • Laffaille, P., A. Acou & J. Guillouët, 2005. The yellow European eel (Anguilla anguilla L.) may adopt a sedentary lifestyle in inland freshwaters. Ecology of Freshwater Fish 14(2): 191–196. .

    Google Scholar 

  • Lavielle, M., 1999. Detection of multiple changes in a sequence of dependent variables. Stochastic Processes and Their Applications 83: 79–102.

    Google Scholar 

  • Limburg, K. E., M. J. Wuenschel, K. Hüssy, Y. Heimbrand & M. Samson, 2018. Making the otolith magnesium chemical calendar-clock tick: plausible mechanism and empirical evidence. Reviews in Fisheries Science & Aquaculture 26: 479–493.

    Google Scholar 

  • Lin, H.-Y. & K. F. Robinson, 2019. How do migratory fish populations respond to barrier removal in spawning and nursery grounds? Theoretical Ecology 12: 379–390.

    Google Scholar 

  • Machut, L. S., K. E. Limburg, R. E. Schmidt & D. Dittman, 2007. Anthropogenic impacts on American eel demographics in Hudson River Tributaries, New York. Transactions of the American Fisheries Society 136: 1699–1713.

    Google Scholar 

  • Maes, G. E., J. A. M. Raeymaekers, C. Pampoulie, A. Seynaeve, G. Goemans, C. Belpaire & F. A. M. Volckaert, 2005. The catadromous European eel Anguilla anguilla (L.) as a model for freshwater evolutionary ecotoxicology: relationship between heavy metal bioaccumulation, condition and genetic variability. Aquatic Toxicology 73: 99–114.

    CAS  PubMed  Google Scholar 

  • Marcogliese, D. J., 2004. Parasites: small players with crucial roles in the ecological theater. EcoHealth 1: 151–164.

    Google Scholar 

  • Mateo, M., P. Lambert, S. Tétard & H. Drouineau, 2017. Impacts that cause the highest direct mortality of individuals do not necessarily have the greatest influence on temperate eel escapement. Fisheries Research 193: 51–59.

    Google Scholar 

  • McCleave, J. D., 2001. Simulation of the impact of dams and fishing weirs on reproductive potential of silver-phase American eels in the Kennebec River basin, Maine. North American Journal of Fisheries Management 21: 592–605.

    Google Scholar 

  • McConnaughey, T. & C. P. McRoy, 1979. Food-web structure and the fractionation of carbon isotopes in the Bering Sea. Marine Biology 53: 257–262.

    CAS  Google Scholar 

  • Moravec, F., 1994. Parasitic nematodes of freshwater fishes in Europe, Academia, Praha:, 473.

    Google Scholar 

  • Moravec, F., & T. Scholz, 2015. Macroparasites and their communities of the European eel Anguilla anguilla (Linnaeus) in the Czech Republic. Folia Parasitologica 6210.14411/fp.2015.033

  • Nilsson, C., C. A. Reidy, M. Dynesius & C. Revenga, 2005. Fragmentation and flow regulation of the world’s large river systems. Science (new York, n.y.) 308: 405–408.

    CAS  Google Scholar 

  • Ogawa, K. & S. Egusa, 1976. Studies on eel pseudodactylogyrosis – I. Morphology and classification of three eel dactylogyrids with a proposal of a new species, Pseudodactylogyrus microrchis. Bulletin of the Japenese Society of Scientific Fisheries 42(4): 395–404.

    Google Scholar 

  • Palstra, A. P., D. F. M. Heppener, V. J. T. Van Ginneken, C. Székely & G. Van den Thillart, 2007. Swimming performance of silver eels is severely impaired by the swim-bladder parasite Anguillicola crassus. Journal of Experimental Marine Biology and Ecology 352: 244–256.

    Google Scholar 

  • Pankhurst, N. W., 1982. Relation of visual changes to the onset of sexual maturation in the European eel Anguilla anguilla (L.). Journal of Fish Biology 21: 127–140.

    Google Scholar 

  • Parzanini, C., M. T. Arts, M. Power, M. Rohtla, A. B. Skiftesvik, J. Koprivnikar, H. I. Browman, D. Milotic & C. M. Durif, 2021. Trophic ecology of the European Eel (Anguilla anguilla) across different salinity habitats inferred from fatty acid and stable isotope analysis. Canadian Journal of Fisheries and Aquatic Sciences. https://doi.org/10.1139/cjfas-2020-0432.

    Article  Google Scholar 

  • Patin, R., M. Etienne, E. Lebarbier, S. Chamaillé-Jammes & S. Benhamou, 2020. Identifying stationary phases in multivariate time series for highlighting behavioural modes and home range settlements. Journal of Animal Ecology 89: 44–56.

    Google Scholar 

  • Patin, R., M. P. Etienne, E. Lebarbier, & S. Benhamou 2019. segclust2d: Bivariate Segmentation/Clustering Methods and Tools. R package version 0. 2. 0.

  • Pess, G. R., T. P. Quinn, S. R. Gephard & R. Saunders, 2014. Re-colonization of Atlantic and Pacific rivers by anadromous fishes: linkages between life history and the benefits of barrier removal. Reviews in Fish Biology and Fisheries 24: 881–900.

    Google Scholar 

  • Post, D. M., C. A. Layman, D. A. Arrington, G. Takimoto, J. Quattrochi & C. G. Montana, 2007. Getting to the fat of the matter: models, methods and assumptions for dealing with lipids in stable isotope analyses. Oecologia 152: 179–189.

    Google Scholar 

  • R Core Team. 2018. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. URL https://www.R-project.org/.

  • Reid, A. J., A. K. Carlson, I. F. Creed, E. J. Eliason, P. A. Gell, P. T. J. Johnson, K. A. Kidd, T. J. MacCormack, J. D. Olden & S. J. Ormerod, 2019. Emerging threats and persistent conservation challenges for freshwater biodiversity. Biological Reviews 94: 849–873.

    PubMed  Google Scholar 

  • Righton, D., H. Westerberg, E. Feunteun, F. Økland, P. Gargan, E. Amilhat, J. Metcalfe, J. Lobon-Cervia, N. Sjöberg, J. Simon, et al., 2016. Empirical observations of the spawning migration of European eels: the long and dangerous road to the Sargasso Sea. Science Advances 2: e1501694.

    PubMed  PubMed Central  Google Scholar 

  • Righton, D., A. Piper, K. Aarestrup, E. Amilhat, C. Belpaire, J. Casselman, M. Castonguay, E. Díaz, H. Dörner & E. Faliex, 2021. Important questions to progress science and sustainable management of anguillid eels. Fish and Fisheries 22: 762–788.

    Google Scholar 

  • Rueden, C. T., J. Schindelin, M. C. Hiner, B. E. DeZonia, A. E. Walter, E. T. Arena & K. W. Eliceiri, 2017. Image J2: ImageJ for the next generation of scientific image data. BMC Bioinformatics 18: 1–26.

    Google Scholar 

  • Secor, D. H., A. Henderson-Arzapalo & P. M. Piccoli, 1995. Can otolith microchemistry chart patterns of migration and habitat utilization in anadromous fishes? Journal of Experimental Marine Biology and Ecology 192: 15–33.

    Google Scholar 

  • Tabouret, H., G. Bareille, F. Claverie, C. Pécheyran, P. Prouzet & O. F. X. Donard, 2010. Simultaneous use of strontium: calcium and barium: calcium ratios in otoliths as markers of habitat: application to the European eel (Anguilla anguilla) in the Adour basin, South West France. Marine Environmental Research 70: 35–45.

    CAS  PubMed  Google Scholar 

  • Tabouret, H., C. Lord, G. Bareille, C. Pécheyran, D. Monti & P. Keith, 2011. Otolith microchemistry in Sicydium punctatum: indices of environmental condition changes after recruitment. Aquatic Living Resources 24: 369–378.

    Google Scholar 

  • Teichert, N., H. Tabouret, R. Lagarde, H. Grondin, D. Ponton, C. Pécheyran & G. Bareille, 2018. Site fidelity and movements of an amphidromous goby revealed by otolith multi-elemental signatures along a tropical watershed. Ecology of Freshwater Fish 27: 834–846.

    Google Scholar 

  • Teichert, N., S. Tétard, T. Trancart, E. de Oliveira, A. Acou, A. Carpentier, B. Bourillon & E. Feunteun, 2020. Towards transferability in fish migration models: A generic operational tool for predicting silver eel migration in rivers. Science of the Total Environment 739: 140069.

    CAS  Google Scholar 

  • Tesch F. W. 2003. The Eel. Oxford

  • Thielen, F., M. Münderle, H. Taraschewski & B. Sures, 2007. Do eel parasites reflect the local crustacean community? A case study from the Rhine river system. Journal of Helminthology 81: 179–189.

    PubMed  Google Scholar 

  • Tsukamoto, K. & I. Nakai, 1998. Do all freshwater eels migrate? Nature 396: 635–636.

    CAS  Google Scholar 

  • Van den Thillart, G., A. Palstra & V. Van Ginneken, 2007. Simulated migration of European silver eel; swim capacity and cost of transport. Journal of Marine Science and Technology 15: 1–16.

    Google Scholar 

  • Verhelst, P., J. Reubens, D. Buysse, P. Goethals, J. Van Wichelen & T. Moens, 2021. Toward a roadmap for diadromous fish conservation: the Big Five considerations. Frontiers in Ecology and the Environment 19: 396–403.

    Google Scholar 

  • Vignon, M., 2015. Extracting environmental histories from sclerochronological structures—recursive partitioning as a mean to explore multi-elemental composition of fish otolith. Ecological Informatics 30: 159–169.

    Google Scholar 

  • Vollestad, L. A., B. Jonsson, N. A. Hvidsten, T. F. Naesje, O. Haraldstad & J. Ruud-Hansen, 1986. Environmental factors regulating the seaward migration of European silver eels (Anguilla anguilla). Canadian Journal of Fisheries and Aquatic Sciences 43: 1909–1916.

    Google Scholar 

  • Vøllestad, L. A., 1992. Geographic variation in age and length at metamorphosis of maturing European eel: environmental effects and phenotypic plasticity. Journal of Animal Ecology 61: 41–48.

    Google Scholar 

  • Watson, J. M., S. M. Coghlan, J. Zydlewski, D. B. Hayes & I. A. Kiraly, 2018. Dam removal and fish passage improvement influence fish assemblages in the Penobscot River, Maine. Transactions of the American Fisheries Society 147: 525–540.

    Google Scholar 

  • WWF, RiverWatch, GEOTA, & EuroNatur. (2019). Hydropower pressure on European rivers: The story in numbers.

Download references

Acknowledgements

This study was conducted with the financial support of the Agence de l’Eau Seine Normandie and the Office Français pour la Biodiversité. We like to thank the two anonymous referees for their comments and suggestions that have contributed to improve the relevance of our manuscript. We are very thankful to colleagues who assisted us during the field survey, especially Christophe Boinet, Sarah Lejosne, and Corentin Gouzien. The experiment was approved by the Cuvier Ethical Committee for Animal Research (DAECC 68-0106) and comply with current laws in France.

Funding

Funding was provide by Agence de l'Eau Seine-Normandie (Nils Teichert and Eric Feunteun).

Author information

Authors and Affiliations

Authors

Contributions

NT Conceptualization, Project administration, Funding acquisition, Data curation, Methodology, Formal analysis, Writing—original draft. AL, HT, CG, AC: Methodology, Data curation, Writing—review & editing. GB: Data curation, Writing—review & editing. AA: Project administration, Funding acquisition, Data curation, Writing—review & editing. TT: Writing—review & editing. LV, ER: Methodology, Data curation. MD, JP: Data curation. EF: Conceptualization, Funding acquisition, Project administration, Supervision, Validation, Writing—review & editing.

Corresponding author

Correspondence to Nils Teichert.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Handling editor: Michael Power

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Teichert, N., Lizé, A., Tabouret, H. et al. A multi-approach study to reveal eel life-history traits in an obstructed catchment before dam removal. Hydrobiologia 849, 1885–1903 (2022). https://doi.org/10.1007/s10750-022-04833-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-022-04833-9

Keywords

Navigation