Skip to main content

Advertisement

Log in

Role of Aquaporins in Inflammation—a Scientific Curation

  • Review
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Inflammation is a universal response mechanism existing as inter-communicator of biological systems. Uncontrolled or dysregulated inflammation addresses chronic low-grade effects eventually resulting in multimorbidity. Active solute transport across the membrane establishes varying osmotic gradients. Aquaporins (AQPs) are a class of critical ubiquitously expressed transmembrane proteins that aid in fluid and small solute transport via facilitated diffusion over established osmotic gradients. Numerous significant data features the biological functions of AQPs rendering them as an appropriate biomarker of health and diseases. Besides their physiological role in well-balanced inflammatory responses, it is worth noting the dysregulation of AQPs during any undesirable inflammatory event. Most literature to date clearly sets out AQPs as potential drug targets instigating AQP-based therapies. In light of this conception, the current review provides a compendious overview on the propitious and portentous out-turns of AQPs under inflammation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AKI:

Acute kidney injury

AQPs:

Aquaporins

ASC:

Inflammasome adaptor protein apoptosis-associated speck-like protein containing CARD

Bax:

Bcl-2- associated X protein

BBB:

Blood brain barrier

COX:

Cyclooxygenase

CREB:

cAMP response element binding protein

ERK:

Extracellular signal-regulated kinase

IKKB:

Inhibitor of kappa B kinase

IL:

Interleukin

INF:

Interferon

JAK:

Janus kinase

KO mice:

Knockout mice

LPS:

Lipopolysaccharides

MAPK:

Mitogen-activated protein kinase

MCP:

Monocyte chemoattractant protein

MHC:

Major histocompatibility complex

NF- κB:

Nuclear factor kappa B

NMO:

Neuromyelitis optica

SS:

Sjogrens syndrome

STAT:

Signal transducer and activator of transcription

TGF:

Transforming growth factor

TNF-α:

Tumor necrosis factor alpha

WT:

Wild type

References

  1. Akira, S., S. Uematsu, and O. Takeuchi. 2006. Pathogen recognition and innate immunity. Cell 124: 783–801. https://doi.org/10.1038/cmi.2017.88.

    Article  CAS  PubMed  Google Scholar 

  2. Medzhitov, R. 2007. Recognition of microorganisms and activation of the immune response. Nature 449: 819–826. https://doi.org/10.1038/nature06246.

    Article  CAS  PubMed  Google Scholar 

  3. Mendes, A.F., M.T. Cruz, and O. Gualillo. 2018. Editorial: The Physiology of Inflammation-The Final Common Pathway to Disease. Frontiers in Physiology 9: 1741. https://doi.org/10.3389/fphys.2018.01741.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Medzhitov, R. 2008. Origin and physiological roles of inflammation. Nature 454: 428–435. https://doi.org/10.1038/nature07201.

    Article  CAS  PubMed  Google Scholar 

  5. Okin, D., and R. Medzhitov. 2012. Evolution of inflammatory diseases. Current Biology 22: R733–R740. https://doi.org/10.1016/j.cub.2012.07.029.

    Article  CAS  PubMed  Google Scholar 

  6. Loo, D.D., T. Zeuthen, G. Chandy, and E.M. Wright. 1996. Cotransport of water by the Na+/glucose cotransporter. Proceedings of the National Academy of Sciences of the United States of America 93: 13367–13370. https://doi.org/10.1073/pnas.93.23.13367.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kotas, M.E., and R. Medzhitov. 2015. Homeostasis, inflammation, and disease susceptibility. Cell 160: 816–827. https://doi.org/10.1016/j.cell.2015.02.010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Meli, R., C. Pirozzi, and A. Pelagalli. 2018. New Perspectives on the Potential Role of Aquaporins (AQPs) in the Physiology of Inflammation. Frontiers in Physiology 9: 101. https://doi.org/10.3389/fphys.2018.00101.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Preston, G.M., and P. Agre. 1991. Isolation of the cDNA for erythrocyte integral membrane protein of 28 kilodaltons: member of an ancient channel family. Proceedings of the National Academy of Sciences of the United States of America 88: 11110–11114. https://doi.org/10.1073/pnas.88.24.11110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Agre, P., G.M. Preston, B.L. Smith, J.S. Jung, S. Raina, C. Moon, et al. 1993. Aquaporin CHIP: the archetypal molecular water channel. American Journal of Physiology 265: F463–F476. https://doi.org/10.1152/ajprenal.1993.265.4.F463.

    Article  CAS  PubMed  Google Scholar 

  11. Mobasheri, A., C.A. Moskaluk, D. Marples, and M. Shakibaei. 2010. Expression of aquaporin 1 (AQP1) in human synovitis. Annals of Anatomy 192: 116–121. https://doi.org/10.1016/j.aanat.2010.01.001.

    Article  PubMed  Google Scholar 

  12. Venglovecz, V., P. Pallagi, L.V. Kemény, A. Balázs, Z. Balla, E. Becskeházi, E. Gál, E. Tóth, Á. Zvara, L.G. Puskás, K. Borka, M. Sendler, M.M. Lerch, J. Mayerle, J.P. Kühn, Z. Rakonczay Jr., and P. Hegyi. 2018. The Importance of Aquaporin 1 in Pancreatitis and Its Relation to the CFTR Cl (-) Channel. Frontiers in Physiology 9: 854. https://doi.org/10.3389/fphys.2018.00854.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Kamsteeg, E.J., D.G. Bichet, I.B. Konings, H. Nivet, M. Lonergan, M.F. Arthus, C.H. van Os, and P.M. Deen. 2003. Reversed polarized delivery of an aquaporin-2 mutant causes dominant nephrogenic diabetes insipidus. The Journal of Cell Biology 163: 1099–1109. https://doi.org/10.1083/jcb.200309017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Boone, M., and P.M. Deen. 2009. Congenital nephrogenic diabetes insipidus: what can we learn from mouse models? Experimental Physiology 94: 186–190. https://doi.org/10.1113/expphysiol.2008.043000.

    Article  CAS  PubMed  Google Scholar 

  15. Ikezoe, K., T. Oga, T. Honda, M. Hara-Chikuma, X. Ma, T. Tsuruyama, K. Uno, J.I. Fuchikami, K. Tanizawa, T. Handa, Y. Taguchi, A.S. Verkman, S. Narumiya, M. Mishima, and K. Chin. 2016. Aquaporin-3 potentiates allergic airway inflammation in ovalbumin-induced murine asthma. Scientific Reports 6: 25781. https://doi.org/10.1038/srep25781.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hara-Chikuma, M., H. Satooka, S. Watanabe, T. Honda, Y. Miyachi, T. Watanabe, and A.S. Verkman. 2015. Aquaporin-3-mediated hydrogen peroxide transport is required for NF-κB signalling in keratinocytes and development of psoriasis. Nature Communications 6: 7454. https://doi.org/10.1038/ncomms8454.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Jarius, S., F. Paul, D. Franciotta, P. Waters, F. Zipp, R. Hohlfeld, A. Vincent, and B. Wildemann. 2008. Mechanisms of disease: aquaporin-4 antibodies in neuromyelitis optica. Nature Clinical Practice. Neurology 4: 202–214. https://doi.org/10.1038/ncpneuro0764.

    Article  CAS  PubMed  Google Scholar 

  18. Soyfoo, M.S., A. Konno, N. Bolaky, J.S. Oak, D. Fruman, C. Nicaise, M. Takiguchi, and C. Delporte. 2012. Link between inflammation and aquaporin-5 distribution in submandibular gland in Sjogren's syndrome? Oral Diseases 18: 568–574. https://doi.org/10.1111/j.1601-0825.2012.01909.x.

    Article  CAS  PubMed  Google Scholar 

  19. Nandula, S.R., S. Amarnath, A. Molinolo, B.C. Bandyopadhyay, B. Hall, C.M. Goldsmith, C. Zheng, J. Larsson, T. Sreenath, W.J. Chen, I.S. Ambudkar, S. Karlsson, B.J. Baum, and A.B. Kulkarni. 2007. Female mice are more susceptible to developing inflammatory disorders due to impaired transforming growth factor beta signaling in salivary glands. Arthritis and Rheumatism 56: 1798–1805. https://doi.org/10.1002/art.22715.

    Article  CAS  PubMed  Google Scholar 

  20. Lehmann, G.L., F.I. Carreras, L.R. Soria, S.A. Gradilone, and R.A. Marinelli. 2008. LPS induces the TNF-alpha-mediated downregulation of rat liver aquaporin-8: role in sepsis-associated cholestasis. American Journal of Physiology. Gastrointestinal and Liver Physiology 294: G567–G575. https://doi.org/10.1152/ajpgi.00232.2007.

    Article  CAS  PubMed  Google Scholar 

  21. Zahn, A., C. Moehle, T. Langmann, R. Ehehalt, F. Autschbach, W. Stremmel, and G. Schmitz. 2007. Aquaporin-8 expression is reduced in ileum and induced in colon of patients with ulcerative colitis. World Journal of Gastroenterology 13: 1687–1695. https://doi.org/10.3748/wjg.v13.i11.1687.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Takeuchi, K., S. Hayashi, T. Matumoto, S. Hashimoto, K. Takayama, N. Chinzei, S. Kihara, M. Haneda, S. Kirizuki, Y. Kuroda, M. Tsubosaka, K. Nishida, and R. Kuroda. 2018. Downregulation of aquaporin 9 decreases catabolic factor expression through nuclear factor-κB signaling in chondrocytes. International Journal of Molecular Medicine 42: 1548–1558. https://doi.org/10.3892/ijmm.2018.3729.

    Article  CAS  PubMed  Google Scholar 

  23. Deeg, C.A., B. Amann, K. Lutz, S. Hirmer, K. Lutterberg, E. Kremmer, and S.M. Hauck. 2016. Aquaporin 11, a regulator of water efflux at retinal Müller glial cell surface decreases concomitant with immune-mediated gliosis. Journal of Neuroinflammation 13: 89. https://doi.org/10.1186/s12974-016-0554-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ohta, E., T. Itoh, T. Nemoto, J. Kumagai, S.B. Ko, K. Ishibashi, et al. 2009. Pancreas-specific aquaporin 12 null mice showed increased susceptibility to caerulein-induced acute pancreatitis. American Journal of Physiology. Cell Physiology 297: C1368–C1378. https://doi.org/10.1152/ajpcell.00117.2009.

    Article  CAS  PubMed  Google Scholar 

  25. Burghard, B., M.L. Elkaer, T.H. Kwon, G.Z. Rácz, G. Varga, M.C. Steward, et al. 2003. Distribution of aquaporin water channels AQP1 and AQP5 in the ductal system of the human pancreas. Gut 52: 1008–1016. https://doi.org/10.1136/gut.52.7.1008.

    Article  Google Scholar 

  26. Chou, C.L., M.A. Knepper, A.N. Hoek, D. Brown, B. Yang, T. Ma, et al. 1999. Reduced water permeability and altered ultrastructure in thin descending limb of Henle in aquaporin-1 null mice. The Journal of Clinical Investigation 103: 491–496. https://doi.org/10.1172/JCI5704.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Dicay, M.S., C.L. Hirota, N.J. Ronaghan, M.A. Peplowski, R.S. Zaheer, C.A. Carati, and W.K. MacNaughton. 2015. Interferon-γ suppresses intestinal epithelial aquaporin-1 expression via Janus kinase and STAT3 activation. PLoS One 10: e0118713. https://doi.org/10.1371/journal.pone.0118713.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Li, B., C. Liu, K. Tang, X. Dong, L. Xue, G. Su, W. Zhang, and Y. Jin. 2019. Aquaporin-1 attenuates macrophage-mediated inflammatory responses by inhibiting p38 mitogen-activated protein kinase activation in lipopolysaccharide-induced acute kidney injury. Inflammation Research 68: 1035–1047. https://doi.org/10.1007/s00011-019-01285-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wang, Y., W. Zhang, G. Yu, Q. Liu, and Y. Jin. 2018. Cytoprotective effect of aquaporin 1 against lipopolysaccharide-induced apoptosis and inflammation of renal epithelial HK-2 cells. Experimental and Therapeutic Medicine 15: 4243–4252. https://doi.org/10.3892/etm.2018.5992.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Liu, C., B. Li, K. Tang, X. Dong, L. Xue, G. Su, and Y. Jin. 2020. Aquaporin 1 alleviates acute kidney injury via PI3K-mediated macrophage M2 polarization. Inflammation Research 69: 509–521. https://doi.org/10.1007/s00011-020-01334-0.

    Article  CAS  PubMed  Google Scholar 

  31. Gao, H., J. Gui, L. Wang, Y. Xu, Y. Jiang, M. Xiong, and Y. Cui. 2016. Aquaporin 1 contributes to chondrocyte apoptosis in a rat model of osteoarthritis. International Journal of Molecular Medicine 38: 1752–1758. https://doi.org/10.3892/ijmm.2016.2785.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Nielsen, S., J. Frøkiaer, D. Marples, T.H. Kwon, P. Agre, M.A. Knepper, et al. 2002. Aquaporins in the kidney: from molecules to medicine. Physiological Reviews 82: 205–244. https://doi.org/10.1152/physrev.00024.2001.

    Article  CAS  PubMed  Google Scholar 

  33. Hasler, U., V. Leroy, U.S. Jeon, R. Bouley, M. Dimitrov, J.A. Kim, D. Brown, H.M. Kwon, P.Y. Martin, and E. Féraille. 2008. NF-kappaB modulates aquaporin-2 transcription in renal collecting duct principal cells. The Journal of Biological Chemistry 283: 28095–28105. https://doi.org/10.1074/jbc.M708350200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ren, H., B. Yang, P.A. Molina, J.M. Sands, and J.D. Klein. 2015. NSAIDs Alter Phosphorylated Forms of AQP2 in the Inner Medullary Tip. PLoS One 10: e0141714. https://doi.org/10.1371/journal.pone.0141714.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Wang, W., R. Luo, Y. Lin, F. Wang, P. Zheng, M. Levi, T. Yang, and C. Li. 2015. Aliskiren restores renal AQP2 expression during unilateral ureteral obstruction by inhibiting the inflammasome. American Journal of Physiology. Renal Physiology 308: F910–F922. https://doi.org/10.1152/ajprenal.00649.2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Höcherl, K., C. Schmidt, B. Kurt, and M. Bucher. 2010. Inhibition of NF-kappaB ameliorates sepsis-induced downregulation of aquaporin-2/V2 receptor expression and acute renal failure in vivo. American Journal of Physiology-Renal Physiology 298: F196–F204. https://doi.org/10.1152/ajprenal.90607.2008.

    Article  CAS  PubMed  Google Scholar 

  37. Cui, W.Y., A.Y. Tian, and T. Bai. 2011. Protective effects of propofol on endotoxemia-induced acute kidney injury in rats. Clinical and Experimental Pharmacology & Physiology 38: 747–754. https://doi.org/10.1111/j.1440-1681.2011.05584.x.

    Article  CAS  Google Scholar 

  38. Sung, C.C., L. Chen, K. Limbutara, H.J. Jung, G.G. Gilmer, C.R. Yang, S.H. Lin, S. Khositseth, C.L. Chou, and M.A. Knepper. 2019. RNA-Seq and protein mass spectrometry in microdissected kidney tubules reveal signaling processes initiating lithium-induced nephrogenic diabetes insipidus. Kidney International 96: 363–377. https://doi.org/10.1016/j.kint.2019.02.015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. De Bosscher, K., W. Vanden Berghe, and G. Haegeman. 2003. The interplay between the glucocorticoid receptor and nuclear factor-kappaB or activator protein-1: molecular mechanisms for gene repression. Endocrine Reviews 24: 488–522. https://doi.org/10.1210/er.2002-0006.

    Article  CAS  PubMed  Google Scholar 

  40. Ren, C.C., W. Zhu, Q.W. Wang, Y.T. Lu, Y. Wang, G.X. Zhang, J.F. Xie, J.W. Wu, Z.M. Jia, T. Zhang, Z.Q. Su, and J.G. Wen. 2018. The renal protect function of erythropoietin after release of bilateral ureteral obstruction in a rat model. Clinical Science (London, England) 132: 2071–2085. https://doi.org/10.1042/CS20180178.

    Article  CAS  Google Scholar 

  41. Ramírez-Lorca, R., M.L. Vizuete, J.L. Venero, M. Revuelta, J. Cano, A.A. Ilundáin, and M. Echevarría. 1999. Localization of aquaporin-3 mRNA and protein along the gastrointestinal tract of Wistar rats. Pflügers Archiv 438: 94–100. https://doi.org/10.1007/s004240050884.

    Article  PubMed  Google Scholar 

  42. Matsuzaki, T., T. Suzuki, H. Koyama, S. Tanaka, and K. Takata. 1999. Water channel protein AQP3 is present in epithelia exposed to the environment of possible water loss. The Journal of Histochemistry and Cytochemistry 47: 1275–1286. https://doi.org/10.1177/002215549904701007.

    Article  CAS  PubMed  Google Scholar 

  43. Peplowski, M.A., A.J. Vegso, V. Iablokov, M. Dicay, R.S. Zaheer, A.A. Ilundáin, et al. 2017. Tumor necrosis factor α decreases aquaporin 3 expression in intestinal epithelial cells through inhibition of constitutive transcription. Physiological Reports. https://doi.org/10.14814/phy2.13451.

  44. Peplowski, M.A., M. Dicay, C.H. Baggio, F. Wysokinski, B. Renaux, M.D. Hollenberg, D. Proud, and W.K. MacNaughton. 2018. Interferon gamma decreases intestinal epithelial aquaporin 3 expression through downregulation of constitutive transcription. Journal of Molecular Medicine (Berlin, Germany) 96: 1081–1093. https://doi.org/10.1007/s00109-018-1681-2.

    Article  CAS  Google Scholar 

  45. Li, F.X., L.Z. Huang, C. Dong, J.P. Wang, H.J. Wu, and S.M. Shuang. 2015. Down-regulation of aquaporin3 expression by lipopolysaccharide via p38/c-Jun N-terminal kinase signalling pathway in HT-29 human colon epithelial cells. World Journal of Gastroenterology 21: 4547–4554. https://doi.org/10.3748/wjg.v21.i15.4547.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Cho, K.H., J.H. Hyun, Y.S. Chang, Y.G. Na, J.H. Shin, K.H. Song, et al. 2010. Expression of nitric oxide synthase and aquaporin-3 in cyclophosphamide treated rat bladder. International Neurourology Journal 14: 149–156. https://doi.org/10.5213/inj.2010.14.3.149.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Ikarashi, N., K. Baba, T. Ushiki, R. Kon, A. Mimura, T. Toda, M. Ishii, W. Ochiai, and K. Sugiyama. 2011. The laxative effect of bisacodyl is attributable to decreased aquaporin-3 expression in the colon induced by increased PGE2 secretion from macrophages. American Journal of Physiology. Gastrointestinal and Liver Physiology 301: G887–G895. https://doi.org/10.1152/ajpgi.00286.2011.

    Article  CAS  PubMed  Google Scholar 

  48. Kon, R., Y. Tsubota, M. Minami, S. Kato, Y. Matsunaga, H. Kimura, Y. Murakami, T. Fujikawa, R. Sakurai, R. Tomimoto, Y. Machida, N. Ikarashi, and K. Sugiyama. 2018. CPT-11-Induced Delayed Diarrhea Develops via Reduced Aquaporin-3 Expression in the Colon. International Journal of Molecular Sciences 19. https://doi.org/10.3390/ijms19010170.

  49. Tancharoen, S., T. Matsuyama, K. Abeyama, K. Matsushita, K. Kawahara, V. Sangalungkarn, M. Tokuda, T. Hashiguchi, I. Maruyama, and Y. Izumi. 2008. The role of water channel aquaporin 3 in the mechanism of TNF-alpha-mediated proinflammatory events: Implication in periodontal inflammation. Journal of Cellular Physiology 217: 338–349. https://doi.org/10.1002/jcp.21506.

    Article  CAS  PubMed  Google Scholar 

  50. Horie, I., M. Maeda, S. Yokoyama, A. Hisatsune, H. Katsuki, T. Miyata, and Y. Isohama. 2009. Tumor necrosis factor-alpha decreases aquaporin-3 expression in DJM-1 keratinocytes. Biochemical and Biophysical Research Communications 387: 564–568. https://doi.org/10.1016/j.bbrc.2009.07.077.

    Article  CAS  PubMed  Google Scholar 

  51. Fernández, J.R., C. Webb, K. Rouzard, M. Voronkov, K.L. Huber, J.B. Stock, M. Stock, J.S. Gordon, and E. Perez. 2017. N-Acetylglutaminoyl-S-farnesyl-L-cysteine (SIG-1191): an anti-inflammatory molecule that increases the expression of the aquaglyceroporin, aquaporin-3, in human keratinocytes. Archives of Dermatological Research 309: 103–110. https://doi.org/10.1007/s00403-016-1708-x.

    Article  CAS  PubMed  Google Scholar 

  52. Nielsen, S., E.A. Nagelhus, M. Amiry-Moghaddam, C. Bourque, P. Agre, and O.P. Ottersen. 1997. Specialized membrane domains for water transport in glial cells: high-resolution immunogold cytochemistry of aquaporin-4 in rat brain. The Journal of Neuroscience 17: 171–180. https://doi.org/10.1523/JNEUROSCI.17-01-00171.1997.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Liu, S., J. Mao, T. Wang, and X. Fu. 2017. Downregulation of Aquaporin-4 Protects Brain Against Hypoxia Ischemia via Anti-inflammatory Mechanism. Molecular Neurobiology 54: 6426–6435. https://doi.org/10.1007/s12035-016-0185-8.

    Article  CAS  PubMed  Google Scholar 

  54. Zhao, F., J. Deng, X. Xu, F. Cao, K. Lu, D. Li, X. Cheng, X. Wang, and Y. Zhao. 2018. Aquaporin-4 deletion ameliorates hypoglycemia-induced BBB permeability by inhibiting inflammatory responses. Journal of Neuroinflammation 15: 157. https://doi.org/10.1186/s12974-018-1203-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Li, L., H. Zhang, and A.S. Verkman. 2009. Greatly attenuated experimental autoimmune encephalomyelitis in aquaporin-4 knockout mice. BMC Neuroscience 10: 94. https://doi.org/10.1186/1471-2202-10-94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Papadopoulos, M.C., and A.S. Verkman. 2005. Aquaporin-4 gene disruption in mice reduces brain swelling and mortality in pneumococcal meningitis. The Journal of Biological Chemistry 280: 13906–13912. https://doi.org/10.1074/jbc.M413627200.

    Article  CAS  PubMed  Google Scholar 

  57. Wang, X., F. An, S. Wang, Z. An, and S. Wang. 2017. Orientin Attenuates Cerebral Ischemia/Reperfusion Injury in Rat Model through the AQP-4 and TLR4/NF-κB/TNF-α Signaling Pathway. Journal of Stroke and Cerebrovascular Diseases 26: 2199–2214. https://doi.org/10.1016/j.jstrokecerebrovasdis.2017.05.002.

    Article  PubMed  Google Scholar 

  58. Dai, W., J. Yan, G. Chen, G. Hu, X. Zhou, and X. Zeng. 2018. AQP4-knockout alleviates the lipopolysaccharide-induced inflammatory response in astrocytes via SPHK1/MAPK/AKT signaling. International Journal of Molecular Medicine 42: 1716–1722. https://doi.org/10.3892/ijmm.2018.3749.

    Article  CAS  PubMed  Google Scholar 

  59. Matsuzaki, T., T. Suzuki, H. Koyama, S. Tanaka, and K. Takata. 1999. Aquaporin-5 (AQP5), a water channel protein, in the rat salivary and lacrimal glands: immunolocalization and effect of secretory stimulation. Cell and Tissue Research 295: 513–521. https://doi.org/10.1007/s004410051257.

    Article  CAS  PubMed  Google Scholar 

  60. Ishida, N., S.I. Hirai, and S. Mita. 1997. Immunolocalization of aquaporin homologs in mouse lacrimal glands. Biochemical and Biophysical Research Communications 238: 891–895. https://doi.org/10.1006/bbrc.1997.7396.

    Article  CAS  PubMed  Google Scholar 

  61. Ohashi, Y., R. Ishida, T. Kojima, E. Goto, Y. Matsumoto, K. Watanabe, N. Ishida, K. Nakata, T. Takeuchi, and K. Tsubota. 2003. Abnormal protein profiles in tears with dry eye syndrome. American Journal of Ophthalmology 136: 291–299. https://doi.org/10.1016/s0002-9394(03)00203-4.

    Article  CAS  PubMed  Google Scholar 

  62. Towne, J.E., C.M. Krane, C.J. Bachurski, and A.G. Menon. 2001. Tumor necrosis factor-alpha inhibits aquaporin 5 expression in mouse lung epithelial cells. The Journal of Biological Chemistry 276: 18657–18664. https://doi.org/10.1074/jbc.M100322200.

    Article  CAS  PubMed  Google Scholar 

  63. Shen, Y., Y. Wang, Z. Chen, D. Wang, X. Wang, M. Jin, and C. Bai. 2011. Role of aquaporin 5 in antigen-induced airway inflammation and mucous hyperproduction in mice. Journal of Cellular and Molecular Medicine 15: 1355–1363. https://doi.org/10.1111/j.1582-4934.2010.01103.x.

    Article  CAS  PubMed  Google Scholar 

  64. Wang, J.J., H. Kong, J. Xu, Y.L. Wang, H. Wang, and W.P. Xie. 2019. Fasudil alleviates LPS-induced lung injury by restoring aquaporin 5 expression and inhibiting inflammation in lungs. Journal of Biomedical Research 33: 156–163. https://doi.org/10.7555/JBR.31.20170024.

    Article  PubMed  Google Scholar 

  65. Chang, Y.L., C.S. Lin, H.W. Wang, K.R. Jian, and S.C. Liu. 2017. Chlorpheniramine attenuates histamine-mediated aquaporin 5 downregulation in human nasal epithelial cells via suppression of NF-κB activation. International Journal of Medical Sciences 14: 1268–1275. https://doi.org/10.7150/ijms.21573.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Xu, J., L. Yang, and L. Dong. 2018. Tanshinol upregulates the expression of aquaporin 5 in lung tissue of rats with sepsis. Oncology Letters 16: 3290–3296. https://doi.org/10.3892/ol.2018.9026.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Ba, F., X. Zhou, Y. Zhang, C. Wu, S. Xu, L. Wu, et al. 2019. Lipoxin A4 ameliorates alveolar fluid clearance disturbance in lipopolysaccharide-induced lung injury via aquaporin 5 and MAPK signaling pathway. Journal of Thoracic Disease 11: 3599–3608. https://doi.org/10.21037/jtd.2019.08.86.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Calamita, G., A. Mazzone, A. Bizzoca, A. Cavalier, G. Cassano, D. Thomas, and M. Svelto. 2001. Expression and immunolocalization of the aquaporin-8 water channel in rat gastrointestinal tract. European Journal of Cell Biology 80: 711–719. https://doi.org/10.1078/0171-9335-00210.

    Article  CAS  PubMed  Google Scholar 

  69. Nagahara, M., Y. Waguri-Nagaya, T. Yamagami, M. Aoyama, T. Tada, K. Inoue, K. Asai, and T. Otsuka. 2010. TNF-alpha-induced aquaporin 9 in synoviocytes from patients with OA and RA. Rheumatology (Oxford) 49: 898–906. https://doi.org/10.1093/rheumatology/keq028.

    Article  CAS  Google Scholar 

  70. De Santis, S., G. Serino, M.R. Fiorentino, V. Galleggiante, P. Gena, G. Verna, et al. 2018. Aquaporin 9 contributes to the maturation process and inflammatory cytokine secretion of murine dendritic cells. Frontiers in Immunology 9. https://doi.org/10.3389/fimmu.2018.02355.

  71. Itoh, T., T. Rai, M. Kuwahara, S.B. Ko, S. Uchida, S. Sasaki, et al. 2005. Identification of a novel aquaporin, AQP12, expressed in pancreatic acinar cells. Biochemical and Biophysical Research Communications 330: 832–838. https://doi.org/10.1016/j.bbrc.2005.03.046.

    Article  CAS  PubMed  Google Scholar 

  72. Kanno, K., S. Sasaki, Y. Hirata, S. Ishikawa, K. Fushimi, S. Nakanishi, et al. 1995. Urinary excretion of aquaporin-2 in patients with diabetes insipidus. The New England Journal of Medicine 332: 1540–1545. https://doi.org/10.1056/NEJM199506083322303.

    Article  CAS  PubMed  Google Scholar 

  73. Alam, J., J.H. Koh, N. Kim, S.K. Kwok, S.H. Park, Y.W. Song, K. Park, and Y. Choi. 2016. Detection of autoantibodies against aquaporin-5 in the sera of patients with primary Sjögren’s syndrome. Immunologic Research 64: 848–856. https://doi.org/10.1007/s12026-016-8786-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Ichiyama, T., E. Nakatani, K. Tatsumi, K. Hideshima, T. Urano, Y. Nariai, and J. Sekine. 2018. Expression of aquaporin 3 and 5 as a potential marker for distinguishing dry mouth from Sjögren’s syndrome. Journal of Oral Science 60: 212–220. https://doi.org/10.2334/josnusd.17-0150.

    Article  CAS  PubMed  Google Scholar 

  75. Rossi, L., M.C. Nicoletti, M. Carmosino, L. Mastrofrancesco, A. Di Franco, F. Indrio, et al. 2017. Urinary excretion of kidney aquaporins as possible diagnostic biomarker of diabetic nephropathy. Journal Diabetes Research 2017: 4360357. https://doi.org/10.1155/2017/436035.

    Article  Google Scholar 

  76. Aharon, R., and Z. Bar-Shavit. 2006. Involvement of aquaporin 9 in osteoclast differentiation. The Journal of Biological Chemistry 281: 19305–19309. https://doi.org/10.1074/jbc.M601728200.

    Article  CAS  PubMed  Google Scholar 

  77. Bonfrate, L., G. Procino, D.Q. Wang, M. Svelto, and P. Portincasa. 2015. A novel therapeutic effect of statins on nephrogenic diabetes insipidus. Journal of Cellular and Molecular Medicine 19: 265–282. https://doi.org/10.1111/jcmm.12422.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Igarashi, H., V.J. Huber, M. Tsujita, and T. Nakada. 2011. Pretreatment with a novel aquaporin 4 inhibitor, TGN-020, significantly reduces ischemic cerebral edema. Neurological Sciences 32: 113–116. https://doi.org/10.1007/s10072-010-0431-1.

    Article  PubMed  Google Scholar 

  79. Pirici, I., T.A. Balsanu, C. Bogdan, C. Margaritescu, T. Divan, V. Vitalie, et al. 2017. Inhibition of aquaporin-4 improves the outcome of ischaemic stroke and modulates brain paravascular drainage pathways. International Journal of Molecular Sciences 19: 46. https://doi.org/10.3390/ijms19010046.

    Article  CAS  PubMed Central  Google Scholar 

  80. Tradtrantip, L., H. Zhang, S. Saadoun, P.W. Phuan, C. Lam, M.C. Papadopoulos, J.L. Bennett, and A.S. Verkman. 2012. Anti-aquaporin-4 monoclonal antibody blocker therapy for neuromyelitis optica. Annals of Neurology 71: 314–322. https://doi.org/10.1002/ana.22657.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Levy, M. (2017). Highly soluble aquaporin-4 extracellular loop c peptide immunization for treatment of neuromyelitis optica. US20170080063A1. U.S. Patent.

  82. Zhang, C., J. Chen, and H. Lu. 2015. Expression of aquaporin-4 and pathological characteristics of brain injury in a rat model of traumatic brain injury. Molecular Medicine Reports 12: 7351–7357. https://doi.org/10.3892/mmr.2015.4372.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Wang, Y., J. Huang, Y. Ma, G. Tang, Y. Liu, X. Chen, Z. Zhang, L. Zeng, Y. Wang, Y.B. Ouyang, and G.Y. Yang. 2015. MicroRNA-29b is a therapeutic target in cerebral ischemia associated with aquaporin 4. Journal of Cerebral Blood Flow and Metabolism 35: 1977–1984. https://doi.org/10.1038/jcbfm.2015.156.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Zheng, Y., L. Wang, M. Chen, A. Pei, L. Xie, and S. Zhu. 2017. Upregulation of miR-130b protects against cerebral ischemic injury by targeting water channel protein aquaporin 4 (AQP4). Am J Transl Res 9: 3452–3461.

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Zheng, L., W. Cheng, X. Wang, Z. Yang, X. Zhou, and C. Pan. 2017. Overexpression of microrna-145 ameliorates astrocyte injury by targeting aquaporin 4 in cerebral ischemic stroke. BioMed Research International 2017: 9530951. https://doi.org/10.1155/2017/9530951.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Zheng, Y., C. Pan, M. Chen, A. Pei, L. Xie, and S. Zhu. 2019. miR-29a ameliorates ischemic injury of astrocytes in vitro by targeting the water channel protein aquaporin 4. Oncology Reports 41: 1707–1717. https://doi.org/10.3892/or.2019.6961.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Li, X.Q., B. Fang, W.F. Tan, Z.L. Wang, X.J. Sun, Z.L. Zhang, and H. Ma. 2016. miR-320a affects spinal cord edema through negatively regulating aquaporin-1 of blood-spinal cord barrier during bimodal stage after ischemia reperfusion injury in rats. BMC Neurosci 17: 10. https://doi.org/10.1186/s12868-016-0243-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Sun, P., D.Z. Liu, G.C. Jickling, F.R. Sharp, and K.J. Yin. 2018. MicroRNA-based therapeutics in central nervous system injuries. Journal of Cerebral Blood Flow and Metabolism 38: 1125–1148. https://doi.org/10.1177/0271678X18773871.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

LFMA: conceptualization and initial draft. CP: design and supervision. CP, ES, KA, AK, AP, CL: critical revision and suggestions. All the authors discussed and approved the final manuscript.

Corresponding author

Correspondence to Chidambaram Prahalathan.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mariajoseph-Antony, L.F., Kannan, A., Panneerselvam, A. et al. Role of Aquaporins in Inflammation—a Scientific Curation. Inflammation 43, 1599–1610 (2020). https://doi.org/10.1007/s10753-020-01247-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-020-01247-4

KEY WORDS

Navigation