Skip to main content

Advertisement

Log in

Neuroprotective and Anti-inflammatory Effect of Tangeretin Against Cerebral Ischemia-Reperfusion Injury in Rats

  • Original Article
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

The neuro-inflammation is well known to be an inflammatory response in the brain tissue. Anti-inflammatory therapy in ischemia/reperfusion (I/R) pathogenesis is a potential therapeutic strategy for post-I/R injury. Currently, we made attempt to scrutinize the neuro-protective effect of tangeretin against I/R injury in the brain of experimental rats. I/R injury is induced in the brain via transient middle cerebral artery occlusion (2 h) and reperfusion (20 h). The infarction area, brain water content and neurofunctional parameters were also estimated. Inflammatory cytokines and brain injury markers were scrutinized at the end of the study. mRNA expression of interleukin 6 (IL-6), toll-like receptor-4 (TLR-4), interleukin 1β (IL-1β), tumor necrosis factor-α (TNF-α), interferon-γ (IFNG-γ), and transforming growth factor-β1 (TGF-β1) was estimated using the qRT-PCR. Tangeretin significantly (P < 0.001) decreased brain water content, infarct volume, neurological score, brain edema, and Evans blue leakage. Tangeretin significantly (P < 0.001) down-regulated the inflammatory and pro-inflammatory cytokines and oxidative stress parameters in the serum and brain tissue of experimental rats. qRT-PCR data demonstrated that rats treated with tangeretin could significantly (P < 0.001) suppress the IL-1β, TLR-4 TNF-α, IFNG-γ, and IL-6 and boost the expression of TGF-β1 compared with I/R injury rats. The result clearly showed tangeretin neuro-protective and anti-inflammatory effect against I/R injury in rats through suppressed inflammatory reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

I/R:

Ischemia/reperfusion

IL-6:

Interleukin 6

TLR-4:

Toll-like receptor-4

IL-1β:

Interleukin 1β

TNF-α:

Tumor necrosis factor α

IFNG-γ:

Interferon-γ

TGF-β1:

Transforming growth factor β1

iNOS:

Inducible nitric oxide synthase

PGE2 :

Prostaglandin E2

COX-2:

Cyclooxygenase-2

NF-κB:

Nuclear kappa B factor

MCAO:

Intraluminal middle cerebral artery occlusion

MCA:

Middle cerebral artery

EDTA:

Ethylenediaminetetraacetic acid

PBA:

Phosphate-buffered saline

GSH:

Glutathione

GPx:

Glutathione peroxidase

CAT:

Catalase

GR:

Glutathione reductase

MDA:

Malondialdehyde

SOD:

Superoxide dismutase

GAPDH:

Glyceraldehyde 3-phosphate dehydrogenase

qRT-PCR:

Quantitative reverse transcription polymerase chain reaction

ANOVA:

One-way variance analysis

ROS:

Reactive oxygen species

O2 :

Superoxide anion

H2O2 :

Hydrogen peroxide

NK:

Natural killer

NADPH:

Nicotinamide adenine dinucleotide phosphate

BBB:

Blood-brain barrier

References

  1. Lijun, W., H. Liu, L. Zhang, G. Wang, M. Zhang, and Y. Yu. 2017. Neuroprotection of dexmedetomidine against cerebral ischemia-reperfusion injury in rats: Involved in inhibition of NF-κB and inflammation response. Biomolecules & Therapeutics 25 (4): 383–389. https://doi.org/10.4062/biomolther.2015.180.

    Article  CAS  Google Scholar 

  2. Yu, Y., Y. Men, X. Shan, H. Zhai, X. Qiao, L. Geng, and C. Li. 2020. Baicalein exerts neuroprotective effect against ischaemic/reperfusion injury via alteration of NF-kB and LOX and AMPK/Nrf2 pathway. Inflammopharmacology. https://doi.org/10.1007/s10787-020-00714-6.

  3. Jun, J., W. Wang, Y.J. Sun, M. Hu, F. Li, and D.Y. Zhu. 2007. Neuroprotective effect of curcumin on focal cerebral ischemic rats by preventing blood-brain barrier damage. European Journal of Pharmacology 561 (1–3): 54–62. https://doi.org/10.1016/j.ejphar.2006.12.028.

    Article  CAS  Google Scholar 

  4. Jing, Z., Y. Zhao, W. Zheng, Y. Lu, G. Feng, and S. Yu. 2008. Neuroprotective effect of curcumin on transient focal cerebral ischemia in rats. Brain Research 1229: 224–232. https://doi.org/10.1016/j.brainres.2008.06.117.

    Article  CAS  Google Scholar 

  5. Zhongkun, R., Y. Li, R. Zhang, Y. Li, Z. Yang, and H. Yang. 2017. Ferulic acid exerts neuroprotective effects against cerebral ischemia/reperfusion-induced injury via antioxidant and anti-apoptotic mechanisms in vitro and in vivo. International Journal of Molecular Medicine 40 (5): 1444–1456. https://doi.org/10.3892/ijmm.2017.3127.

    Article  CAS  Google Scholar 

  6. Jing, S., F. Wang, H. Li, H. Zhang, J. Jin, W. Chen, and M. Pang. 2015. Neuroprotective effect of sodium butyrate against cerebral ischemia/reperfusion injury in mice. BioMed Research International 2015: 395895–395898. https://doi.org/10.1155/2015/395895.

    Article  CAS  Google Scholar 

  7. Yule, W., G. Xiao, S. He, X. Liu, L. Zhu, X. Yang, and Y. Zhang. 2020. Protection against acute cerebral ischemia/reperfusion injury by QiShenYiQi via neuroinflammatory network mobilization. Biomedicine & Pharmacotherapy 125: 109945. https://doi.org/10.1016/j.biopha.2020.109945.

    Article  CAS  Google Scholar 

  8. Shibin, D., Y. Deng, Y. Yuan, and Y. Sun. 2019. Safflower yellow B protects brain against cerebral ischemia reperfusion injury through AMPK/NF-kB pathway. Evidence-based Complementary and Alternative Medicine 2019: 7219740. https://doi.org/10.1155/2019/7219740.

    Article  Google Scholar 

  9. Jie, L.X., G. Mei, J.P. Qian, Y.P. Zeng, and M.P. Wang. 2013. Puerarin partly counteracts the inflammatory response after cerebral ischemia/reperfusion via activating the cholinergic anti-inflammatory pathway. Neural Regeneration Research 8 (34): 3203–3215. https://doi.org/10.3969/j.issn.1673-5374.2013.34.004.

    Article  CAS  Google Scholar 

  10. Eugene, K., H.C. Kim, S. Lee, H.G. Ryu, Y.H. Park, J.H. Kim, Y.J. Lim, and H.P. Park. 2017. Dexmedetomidine confers neuroprotection against transient global cerebral ischemia/reperfusion injury in rats by inhibiting inflammation through inactivation of the TLR-4/NF-κB pathway. Neuroscience Letters 649: 20–27. https://doi.org/10.1016/j.neulet.2017.04.011.

    Article  CAS  Google Scholar 

  11. Wang, L., H. Liu, Y. Yu, L. Zhang, G. Wang, and M. Zhang. 2017. Neuroprotection of dexmedetomidine against cerebral ischemia-reperfusion injury in rats: Involved in inhibition of NF-kappaB and inflammation response. Biomolecules & Therapeutics 25 (4): 383–389. https://doi.org/10.4062/biomolther.2015.180.

    Article  CAS  Google Scholar 

  12. Li, C., Y. Bian, Y. Feng, F. Tang, L. Wang, M.P.M. Hoi, D. Ma, C. Zhao, S. Ming, and Y. Lee. 2019. Neuroprotective effects of BHDPC, a novel neuroprotectant, on experimental stroke by modulating microglia polarization. ACS Chemical Neuroscience 10 (5): 2434–2449. https://doi.org/10.1021/acschemneuro.8b00713.

    Article  CAS  PubMed  Google Scholar 

  13. Kim, J.Y., M. Kawabori, and M.A. Yenari. 2014. Innate inflammatory responses in stroke: Mechanisms and potential therapeutic targets. Current Medicinal Chemistry 21 (18): 2076–2097. https://doi.org/10.2174/0929867321666131228205146.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Baeuerle, P.A., and T. Henkel. 1994. Function and activation of NF-kappaB in the immune system. Annual Review of Immunology 12: 141–179. https://doi.org/10.1146/annurev.iy.12.040194.001041.

    Article  CAS  PubMed  Google Scholar 

  15. Vallabhapurapu, S., and M. Karin. 2009. Regulation and function of NF-κB transcription factors in the immune system. Annual Review of Immunology 27: 693–733. https://doi.org/10.1146/annurev.immunol.021908.132641.

    Article  CAS  PubMed  Google Scholar 

  16. He, Y., X. Ma, D. Li, and J. Hao. 2017. Thiamet G mediates neuroprotection in experimental stroke by modulating microglia/macrophage polarization and inhibiting NF-κB p65 signaling. Journal of Cerebral Blood Flow and Metabolism 37 (8): 2938–2951. https://doi.org/10.1177/0271678X16679671.

    Article  CAS  PubMed  Google Scholar 

  17. Han, H., L.M. Wu, W.M. Yang, M.X. Wang, J.J. Tang, H. Wang, Z.X. Liu, R.Z. Liu, T. Dong, J. Zhang, B. Yang, and M.X. Han. 2010. Characteristics of traditional Chinese medicine syndromes in post-stroke depression. Journal of Chinese Integrative Medicine. 8 (5): 427–431. https://doi.org/10.3736/jcim20100505.

    Article  PubMed  Google Scholar 

  18. Liu, Y., J. Han, Z. Zhou, and D. Li. 2019. Tangeretin inhibits streptozotocin-induced cell apoptosis via regulating NF-κB pathway in INS-1 cells. Journal of Cellular Biochemistry 120 (3): 3286–3293. https://doi.org/10.1002/jcb.27596.

    Article  CAS  PubMed  Google Scholar 

  19. Li, L.M., and W. Liu. 2018. Effect of tangeretin on ovalbumin-provoked allergic respiratory asthma in Swiss albino mice. Tropical Journal of Pharmaceutical Research 17 (2): 253. https://doi.org/10.4314/tjpr.v17i2.9.

    Article  CAS  Google Scholar 

  20. Lee, E.Y., S.O. Kim, S.N. Chang, J.H. Lee, B.S. Hwang, J.T. Woo, S.C. Kang, J. Lee, and J.G. Park. 2019. Efficacy of polymethoxylated flavonoids from citrus depressa extract on alcohol-induced liver injury in mice. Biotechnology and Bioprocess Engineering 24: 907–914. https://doi.org/10.1007/s12257-019-0310-4.

    Article  CAS  Google Scholar 

  21. Takano, K., Y. Tabata, Y. Kitao, R. Murakami, H. Suzuki, M. Yamada, M. Iinuma, Y. Yoneda, S. Ogawa, and O. Hori. 2007. Methoxyflavones protect cells against endoplasmic reticulum stress and neurotoxin. American Journal of Physiology - Cell Physiology 293 (1): C353–C361. https://doi.org/10.1152/ajpcell.00388.2006.

    Article  CAS  Google Scholar 

  22. Chunfang, W., J. Zhao, Y. Chen, Y. Li, R. Zhu, B. Zhu, and Y. Zhang. 2019. Tangeretin protects human brain microvascular endothelial cells against oxygen-glucose deprivation-induced injury. Journal of Cellular Biochemistry 120 (4): 4883–4891. https://doi.org/10.1002/jcb.27762.

    Article  CAS  Google Scholar 

  23. Xing, P., K. Ma, J. Wu, W. Long, and D. Wang. 2018. Protective effect of polysaccharide peptide on cerebral ischemia-reperfusion injury in rats. Molecular Medicine Reports 18 (6): 5371–5378. https://doi.org/10.3892/mmr.2018.9579.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Gong, G., L. Yin, L. Yuan, D. Sui, Y. Sun, H. Fu, L. Chen, and X. Wang. 2018. Ganglioside GM1 protects against high altitude cerebral edema in rats by suppressing the oxidative stress and inflammatory response via the PI3K/AKT-Nrf2 pathway. Molecular Immunology 95: 91–98. https://doi.org/10.1016/j.molimm.2018.02.001.

    Article  CAS  PubMed  Google Scholar 

  25. Kumar, P., K.T. Sunil Kumar, M.K. Nainita, A.S. Tarun, B.G.R. Ramudu, K. Deepika, A. Pramoda, and C. Yasmeen. 2020. Cerebroprotective potential of hesperidin nanoparticles against bilateral common carotid artery occlusion reperfusion injury in rats and in silico approaches. Neurotoxicity Research 37 (2): 264–274. https://doi.org/10.1007/s12640-019-00098-8.

    Article  CAS  Google Scholar 

  26. Hobson, M.J., and B. Zingarelli. 2014. Ischemia-reperfusion injury. In In Pediatric critical care medicine: Volume 1: Care of the critically ill or injured child, second ed. https://doi.org/10.1007/978-1-4471-6362-6_24.

    Chapter  Google Scholar 

  27. Schaller, B., and R. Graf. 2004. Cerebral ischemia and reperfusion: The pathophysiologic concept as a basis for clinical therapy. Journal of Cerebral Blood Flow and Metabolism 24 (4): 351–371. https://doi.org/10.1097/00004647-200404000-00001.

    Article  PubMed  Google Scholar 

  28. Fukuta, T., T. Asai, A. Sato, M. Namba, Y. Yanagida, T. Kikuchi, H. Koide, K. Shimizu, and N. Oku. 2016. Neuroprotection against cerebral ischemia/reperfusion injury by intravenous administration of liposomal fasudil. International Journal of Pharmaceutics 506 (1–2): 129–137. https://doi.org/10.1016/j.ijpharm.2016.04.046.

    Article  CAS  PubMed  Google Scholar 

  29. Cheng, C.Y., S.Y. Su, N.Y. Tang, T.Y. Ho, S.Y. Chiang, and C.L. Hsieh. 2008. Ferulic acid provides neuroprotection against oxidative stress-related apoptosis after cerebral ischemia/reperfusion injury by inhibiting ICAM-1 mRNA expression in rats. Brain Research 1209: 136–150. https://doi.org/10.1016/j.brainres.2008.02.090.

    Article  CAS  PubMed  Google Scholar 

  30. Xue, J., X. Zhang, C. Zhang, N. Kang, X. Liu, J. Yu, N. Zhang, H. Wang, L. Zhang, R. Chen, L. Cui, L. Wang, and X. Wang. 2016. Protective effect of Naoxintong against cerebral ischemia reperfusion injury in mice. Journal of Ethnopharmacology 182: 181–189. https://doi.org/10.1016/j.jep.2016.02.022.

    Article  PubMed  Google Scholar 

  31. Sinha, K., G. Chaudhary, and Y.K. Gupta. 2002. Protective effect of resveratrol against oxidative stress in middle cerebral artery occlusion model of stroke in rats. Life Sciences 71 (6): 655–665. https://doi.org/10.1016/S0024-3205(02)01691-0.

    Article  CAS  PubMed  Google Scholar 

  32. Malik, Z.A., M. Singh, and P.L. Sharma. 2011. Neuroprotective effect of Momordica charantia in global cerebral ischemia and reperfusion induced neuronal damage in diabetic mice. Journal of Ethnopharmacology 133 (2): 729–734. https://doi.org/10.1016/j.jep.2010.10.061.

    Article  PubMed  Google Scholar 

  33. Haddad, M.H.R., C. Bloquel, B. Coqueran, C. Szabó, M. Plotkine, D. Scherman, and I. Margaill. 2006. Anti-inflammatory effects of PJ34, a poly(ADP-ribose) polymerase inhibitor, in transient focal cerebral ischemia in mice. British Journal of Pharmacology 149 (1): 23–30. https://doi.org/10.1038/sj.bjp.0706837.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Clark, W.M., L.G. Rinker, N.S. Lessov, K. Hazel, J.K. Hill, M. Stenzel-Poore, and F. Eckenstein. 2000. Lack of interleukin-6 expression is not protective against focal central nervous system ischemia. Stroke. 31: 1715–1720. https://doi.org/10.1161/01.STR.31.7.1715.

    Article  CAS  PubMed  Google Scholar 

  35. Bhatt, P.C., S. Pathak, V. Kumar, and B.P. Panda. 2018. Attenuation of neurobehavioral and neurochemical abnormalities in animal model of cognitive deficits of Alzheimer’s disease by fermented soybean nanonutraceutical. Inflammopharmacology. 26 (1): 105–118. https://doi.org/10.1007/s10787-017-0381-9.

    Article  CAS  PubMed  Google Scholar 

  36. Bhatt, P.C., A. Verma, F.A. Al-Abbasi, F. Anwar, V. Kumar, and B.P. Panda. 2017. Development of surface-engineered PLGA nanoparticulate-delivery system of tet1-conjugated nattokinase enzyme for inhibition of Aβ40plaques in Alzheimer’s disease. International Journal of Nanomedicine 12: 8749–8768. https://doi.org/10.2147/IJN.S144545.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Yan, W., X. Shen, H. Shen, J. Mai, M. Wu, and G. Yao. 2010. Effects of lycopene on cerebral ischemia-reperfusion injury in rats. Journal of Hygiene Research. 39 (2): 201–204.

    Google Scholar 

  38. Xiangnan, Z., H. Yan, Y. Yuan, J. Gao, Z. Shen, Y. Cheng, Y. Shen, et al. 2013. Cerebral ischemia-reperfusion-induced autophagy protects against neuronal injury by mitochondrial clearance. Autophagy. 9 (9): 1321–1333. https://doi.org/10.4161/auto.25132.

    Article  CAS  Google Scholar 

  39. Louise, M., L. Wu, N. Haughey, X. Liang, T. Hand, Q. Wang, R.M. Breyer, and K. Andreasson. 2004. Neuroprotective function of the PGE2 EP2 receptor in cerebral ischemia. The Journal of Neuroscience 24 (1): 257–268. https://doi.org/10.1523/JNEUROSCI.4485-03.2004.

    Article  CAS  Google Scholar 

  40. Arthur, L., E. Suri-Payer, C. Veltkamp, H. Doerr, C. Sommer, S. Rivest, T. Giese, and R. Veltkamp. 2009. Regulatory T cells are key cerebroprotective immunomodulators in acute experimental stroke. Nature Medicine 15 (2): 192–199. https://doi.org/10.1038/nm.1927.

    Article  CAS  Google Scholar 

  41. Gokhan, Y., T.V. Arumugam, K.Y. Stokes, and D. Neil Granger. 2006. Role of T lymphocytes and interferon-γ in ischemic stroke. Circulation. 113 (17): 2105–2112. https://doi.org/10.1161/CIRCULATIONAHA.105.593046.

    Article  Google Scholar 

  42. Lun, L.H., N. Kostulas, Y.M. Huang, B.G. Xiao, P.V.D. Meide, V. Kostulas, V. Giedraitas, and H. Link. 2001. IL-17 and IFN-γ mRNA expression is increased in the brain and systemically after permanent middle cerebral artery occlusion in the rat. Journal of Neuroimmunology 1 (1): 5–14. https://doi.org/10.1016/S0165-5728(01)00264-8.

    Article  Google Scholar 

  43. Ashuthosh, D., K. Bowen, R. Place, L.C. Li, and R. Vemuganti. 2009. Transient focal ischemia induces extensive temporal changes in rat cerebral MicroRNAome. Journal of Cerebral Blood Flow and Metabolism 29 (4): 675–687. https://doi.org/10.1038/jcbfm.2008.157.

    Article  CAS  Google Scholar 

  44. Ronaldson, Patrick T., Kristin M. Demarco, Lucy Sanchez-Covarrubias, Christine M. Solinsky, and Thomas P. Davis. 2009. Transforming growth factor-Β signaling alters substrate permeability and tight junction protein expression at the blood-brain barrier during inflammatory pain. Journal of Cerebral Blood Flow and Metabolism 29 (6): 1084–1098. https://doi.org/10.1038/jcbfm.2009.32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. McMillin, M.A., G.A. Frampton, A.P. Seiwell, N.S. Patel, A.N. Jacobs, and S. DeMorrow. 2015. TGFβ1 exacerbates blood-brain barrier permeability in a mouse model of hepatic encephalopathy via upregulation of MMP9 and downregulation of claudin-5. Laboratory Investigation 95 (8): 903–913. https://doi.org/10.1038/labinvest.2015.70.

    Article  CAS  PubMed  Google Scholar 

  46. Hyakkoku, K., J. Hamanaka, K. Tsuruma, M. Shimazawa, H. Tanaka, S. Uematsu, S. Akira, N. Inagaki, H. Nagai, and H. Hara. 2010. Toll-like receptor 4 (TLR4), but not TLR3 or TLR9, knock-out mice have neuroprotective effects against focal cerebral ischemia. Neuroscience 171 (1): 258–267. https://doi.org/10.1016/j.neuroscience.2010.08.054.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was supported by the National Natural Science Foundation of China (Nos. 81704170 and 81473763). This study was also supported by grants from the Heilongjiang Start-up Fund for Postdoctoral Research (No. LBH-Q18117) and Excellent leading talents support plan of the Heilongjiang University of Chinese Medicine (2018RCL11) and The Training Project of scientific research technology for young and middle-aged in Shenzhen People’s Hospital, 2ND Clinical Medical College of Jinan University (No. SYKYPY201925).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhongren Sun.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, T., Feng, C., Wang, D. et al. Neuroprotective and Anti-inflammatory Effect of Tangeretin Against Cerebral Ischemia-Reperfusion Injury in Rats. Inflammation 43, 2332–2343 (2020). https://doi.org/10.1007/s10753-020-01303-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-020-01303-z

KEY WORDS

Navigation