Skip to main content
Log in

Quintessence Reissner Nordström Anti de Sitter Black Holes and Joule Thomson Effect

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

In this work we investigate corrections of the quintessence regime of the dark energy on the Joule-Thomson (JT) effect of the Reissner Nordström anti de Sitter (RNAdS) black hole. The quintessence dark energy has equation of state as p q = ωρ q in which \(-1<\omega <-\frac {1}{3}\). Our calculations are restricted to ansatz: ω = − 1 (the cosmological constant regime) and \(\omega =-\frac {2}{3}\) (quintessence dark energy). To study the JT expansion of the AdS gas under the constant black hole mass, we calculate inversion temperature T i of the quintessence RNAdS black hole where its cooling phase is changed to heating phase at a particular (inverse) pressure P i . Position of the inverse point {T i , P i } is determined by crossing the inverse curves with the corresponding Gibbons-Hawking temperature on the T-P plan. We determine position of the inverse point versus different numerical values of the mass M and the charge Q of the quintessence AdS RN black hole. The cooling-heating phase transition (JT effect) is happened for M > Q in which the causal singularity is still covered by the horizon. Our calculations show sensitivity of the inverse point {T i , P i } position on the T-P plan to existence of the quintessence dark energy just for large numerical values of the AdS RN black holes charge Q. In other words the quintessence dark energy dose not affect on position of the inverse point when the AdS RN black hole takes on small charges.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Perlmutter, S., et al.: Supernova cosmology project collaboration. Astrophys. J. 517, 565 (1999). arXiv:astro-ph/9812133

    Article  ADS  Google Scholar 

  2. Riess, A.G., et al.: Supernova search team collaboration, cosmological constant. Astron. J. 116, 1009 (1998). arXiv:atro-ph/9805201

    Article  ADS  Google Scholar 

  3. Garbavich, P.M., et al.: Supernova limits on the cosmic equation of state. Astrophys. J. 509, 74 (1998). arXiv:astro-ph/9806396

    Article  ADS  Google Scholar 

  4. Chiba, T.: Quintessence, the gravitational constant, and gravity. Phys. Rev. D 60, 083508 (1998). arXiv:astro-ph/9903094

    Article  ADS  MathSciNet  Google Scholar 

  5. Bahcall, N.A., Ostriker, J.P., Perlmutter, S., Steinhardt, P.J.: The cosmic triangle: revealing the state of the Universe. Science 284, 1481 (1999). arXiv:astro-ph/9906463

    Article  ADS  Google Scholar 

  6. Steinhardt, P.J., Wang, L.M., Zlatev, I.: Cosmological tracking solutions. Phys. Rev. D59, 123504 (1999). arXiv:astro-ph/9812313

  7. Wang, L.M., Caldwell, R.R., Ostriker, J.P., Steinhardt, P.J.: Cosmic concordance and quintessence. Astrophys. J. 530, 17 (2000). arXiv:astro-ph/9901388

    Article  ADS  Google Scholar 

  8. Ratra, P., Peebles, L.: Cosmological consequences of a rolling homogeneous scalar field. Phys. Rev. D 37, 3406 (1988)

    Article  ADS  Google Scholar 

  9. Caldwell, R.R., Dave, R., Steinhardt, P.J.: Cosmological imprint of an energy component with general equation-of-state. Phys. Rev. Lett. 80, 1582 (1998)

    Article  ADS  MATH  Google Scholar 

  10. Gibbons, G.W., Hawking, S.W.: Cosmological event horizon, thermodynamics, and particle creation. Phys. Rev. D 15, 2738 (1977)

    Article  ADS  MathSciNet  Google Scholar 

  11. Hellerman, S., Kaloper, N., Susskind, L.: String theory and quintessence. JHEP 0106, 003 (2001). arXiv:hep-th/0104180

    Article  ADS  MathSciNet  Google Scholar 

  12. Fischler, W., Kashani-poor, A., McNees, R., Paban, S.: The acceleration of the Universe, a challenge for string theory. JHEP 0107, 003 (2001). arXiv:hep-th/0104181

    Article  ADS  MathSciNet  Google Scholar 

  13. Chen, S., Wang, B., Su, R.: Hawking radiation in a D-dimensional static spherically symmetric black hole surrounded by quintessence. Phys. Rev. D 77, 124011 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  14. Chen, S., Jing, J.: Quasi-normal modes of a black hole surrounded by quintessence. Class. Quant. Grav. 22, 4651 (2005)

    Article  ADS  MATH  Google Scholar 

  15. Li, G.Q.: Effects of dark energy on P-V criticality of charged AdS black holes. Phys. Lett. B 735, 256 (2014). arXiv:gr-qc/1407.0011

    Article  ADS  Google Scholar 

  16. Kubiznak, D., Mann, R.B.: P-V criticality of charged AdS black holes. JHEP 1207, 033 (2012). arXiv:hep-th/1205.0559

    Article  ADS  MathSciNet  Google Scholar 

  17. Dolan, B.P.: Black holes and Boyle’s law - the thermodynamics of the cosmological constant. Mod. Phys. Lett. A 30, 1540002 (2015). arXiv:gr-qc/1408.4023

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Kastor, D., Ray, S., Traschen, J.: Enthalpy and the mechanics of AdS black holes. Class. Quant. Grav. 26, 195011 (2009). arXiv:hep-th/0904.2765

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Dolan, B.P.: Where is the PdV term in the first law of black hole thermodynamics? arXiv:gr-qc/209.1272

  20. Dolan, B.P.: Pressure and volume in the first law of black hole thermodynamics. Class. Quant. Grav. 28, 235017 (2011). arXiv:gr-qc/1106.6260

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Caceres, E., Nguyen, P.H., Pedraza, J.F.: Holographic entanglement chemistry. Phys. Rev. D 95, 106015 (2017). arXiv:hep-th/1605.00595

    Article  ADS  Google Scholar 

  22. Johnson, C.V.: Holographic heat engines. Class. Quantum. Grav. 31, 205002 (2014). arXiv:hep-th/1404.5982

    Article  ADS  MATH  Google Scholar 

  23. Chamblin, A., Emparan, R., Johnson, C.V., Myers, R.C.: Charged AdS black holes and catastrophic holography. Phys. Rev. D 60, 064018 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  24. Chamblin, A., Emparan, R., Johnson, C.V., Myers, R.C.: Holography thermodynamics and fluctuations of charged AdS black holes. Phys. Rev. D 60, 104026 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  25. Cai, R.G., Cao, L.M., Li, L., Yang, R.Q.: P-V criticality in the extended phase space of Gauss-Bonnet black holes in AdS space. JEHP 09, 005 (2013). arXiv:gr-qc/1303.6233

    Google Scholar 

  26. Wei, S.W., Liu, Y.X.: Charged AdS black hole heat engines. arXiv:gr-qc/1708.08176

  27. Zeng, X.X., Chen, D.Y., Li, L.F.: Holographic thermalization and gravitational collapse in the space time dominated by quintessence dark energy. Phys. Rev. D 91, 046005 (2015). arXiv:hep-th/1408.6632

    Article  ADS  Google Scholar 

  28. Chen, S., Pan, Q., Jing, J.: Holographic superconductors in quintessence AdS black hole spacetime. Class. Quant. Grav. 30, 145001 (2013). arXiv:gr-qc/1206.2069

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. Balasubramanian, V., et al: Thermalization of strongly coupled field theories. Phys. Rev. Lett. 106, 191601 (2011). arXiv:hep-th/1012.4753

    Article  ADS  Google Scholar 

  30. Balasubramanian, V., et al.: Holographic Thermalization. Phys. Rev. D 84, 026010 (2011). arXiv:hep-th/1103.2683

    Article  ADS  Google Scholar 

  31. Galante, D., Schvellinger, M.: Thermalization with a chemical potential from AdS space. JHEP 1207, 096 (2012). arXiv:hep-th/1205.1548

    Article  ADS  Google Scholar 

  32. Caeres, E., Kundu, A.: Holographic thermalization with chemical potential. JHEP 1209, 055 (2012). arXiv:hep-th/1205.2354

    Article  ADS  Google Scholar 

  33. Zeng, X.X., Liu, B.W.: Holographic thermalization in Gauss Bonnet gravity. Phys Lett. B 726, 481 (2013). arXiv:hep-th/1305.4841

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. Zeng, X.X., Liu, X.M., Liu, B.W.: Holographic thermalization with a chemical potential in Gauss Bonnet gravity. JHEP 03, 031 (2014). arXiv:hep-th/1311.0718

    Article  ADS  Google Scholar 

  35. Albash, T., Johnson, C.V.: Holographic studies of entanglement entropy in superconductors. JHEP 1205, 079 (2012). arXiv:hep-th/1205.2605

    Article  ADS  Google Scholar 

  36. Cai, R.G., He, S., Li, L., Zhang, Y.L.: Holographic entanglement entropy in insulator/superconductor transition. JHEP 1207, 088 (2012). arXiv:hep-th/1203.6620

    Article  ADS  Google Scholar 

  37. Cai, R.G., Li, L., Li, L.F., Su, R.K.: Entanglement entropy in holographic P-wave superconductor/insulator model. JHEP 1306, 063 (2013). arXiv:hep-th/1303-4828

    Article  ADS  Google Scholar 

  38. Li, L.F., Cai, R.G., Li, L., Shen, C.: Entanglement entropy in a holographic P-Wave superconductor model. Nucl. Phys. B 894, 15 (2015). arXiv:hep-th/1310.6239

    Article  ADS  MathSciNet  MATH  Google Scholar 

  39. Cai, R.G., He, S., Li, L., Zhang, Y.L.: Holographic entanglement entropy in insulator/superconductor transition. JHEP 1207, 088 (2012). arXiv:hep-th/1203.6620

    Article  ADS  Google Scholar 

  40. Bai, X., Lee, B.H., Li, L., Sun, J.R., Zhang, H.Q.: Time evolution of entanglement entropy in quenched holographic superconductors. JHEP 040, 66 (2015). arXiv:hep-th/1412.5500

    Article  MathSciNet  Google Scholar 

  41. Cai, R.G., Li, L., Li, L.F., Yang, R.Q.: Introduction to holographic superconductor models. Sci. China-Phys. Mech. Astron. 58, 060401 (2015). arXiv:hep-th/1502.00437

    Google Scholar 

  42. Ling, Y., Liu, P., Niu, C., Wu, J.P., Xian, Z.Y.: Holographic entanglement entropy close to quantum phase transition. arXiv:hep-th/1502.03661

  43. Engelhardt, N., Hertog, T., Horowitz, G.T.: Holographic signatures of cosmological singularities. Phys. Rev. Lett. 113, 121602 (2014). arXiv:hep-th/1402.2309

    Article  ADS  Google Scholar 

  44. Engelhardt, N., Hertog, T., Horowitz, G.T.: Further holographic investigations of big bang singularities. JHEP 1507, 044 (2015). arXiv:hep-th/1503.08838

    Article  ADS  MathSciNet  Google Scholar 

  45. Zeng, X.X., Li, L.F.: Van der Waals phase transition in the framework of holography. Phys. Lett. B 764, 100 (2017). arXiv:hep-th/1512.08855

    Article  ADS  MATH  Google Scholar 

  46. Hawking, S.W., Page, D.N.: Thermodynamics of black holes in anti-de Sitter space. Commun. Math. Phys. 87, 577 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  47. Ökcü, Ö., Aydiner, E.: Joule Thomson expansion of charged AdS Black holes. Eur. Phys. J. C 77, 24 (2017). arXiv:gr-qc/1611.06327

    Article  ADS  Google Scholar 

  48. Ökcü, Ö., Aydiner, E.: Joule-Thompson expansion of Kerr-AdS black holes. arXiv:gr-qc/1709.06426

  49. Gans, P. J.: Joule Thomson expansion. Phys. Chem. I 25, 0651 (1992)

    Google Scholar 

  50. Kiselev, V.V.: Quintessence and black holes. Class Quant. Grav. 20, 1187 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  51. Das, S., Majumdar, P., Bhaduri, R.K.: General logarithmic corrections to black hole entropy. Class. Quant. Grav. 19, 2355 (2002). arXiv:hep-th/0111001

    Article  ADS  MathSciNet  MATH  Google Scholar 

  52. Maldacena, J.M.: The large N limit of superconformal field theories and supergravity. Adv. Theor. Math. Phys. 2, 231–252 (1998). arXiv:hep-th/9711200v3

    Article  ADS  MathSciNet  MATH  Google Scholar 

  53. Gubser, S.S., Klebanov, I.R., Polyakov, A.M.: Gauge theory correlators from non-critical string theory. Phys. Lett. B 428, 105–114 (1998). arXiv:hep-th/9802109

    Article  ADS  MathSciNet  MATH  Google Scholar 

  54. Witten, E.: Anti De Sitter space and holography. Adv. Theor. Math. Phys. 2, 253–291 (1998). arXiv:hep-th/9802150

    Article  ADS  MathSciNet  MATH  Google Scholar 

  55. Dolan, B.P.: The cosmological constant and the black hole equation of state. Class Quant. Grav. 28, 125020 (2011). arXiv:gr-qc/1008.5023

    Article  ADS  MATH  Google Scholar 

  56. Ghaffarnejad, H., Neyad, H., Mojahedi, M.A.: Evaporating quantum Lukewarm black holes final state from back-reaction corrections of quantum scalar fields. Astrophys. Space Sci. 346, 497 (2013)

    Article  ADS  MATH  Google Scholar 

  57. Holzhey, C., Larsen, F., Wilczek, F.: Geometric and renormalized entropy in conformal field theory. Nucl. Phys. B 424, 443 (1994). arXiv:hep-th/9403108

    Article  ADS  MathSciNet  MATH  Google Scholar 

  58. Ryu, S., Takayanagi, T.: Holographic derivation of entanglement entropy from AdS/CFT. Phys. Rev. Lett. 96, 181602 (2006). arXiv:hep-th/0603001

    Article  ADS  MathSciNet  MATH  Google Scholar 

  59. Ryu, S., Takayanagi, T.: Aspects of holographic entanglement entropy. JHEP 0608, 045 (2006). arXiv:hep-th/0605073

    Article  ADS  MathSciNet  MATH  Google Scholar 

  60. Ghaffarnejad, H.: Quantum field backreaction corrections and remnant stable evaporating Schwarzschild-de Sitter dynamical black hole. Phys. Rev. D 75, 084009 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  61. Ghafarnejad, H: Stability of the evaporating Schwarzschild-de Sitter black hole final state. Phys. Rev. D 74, 104012 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  62. Ghaffarnejad, H., Salehi, H.: Hadamard renormalization, conformal anomaly and cosmological event horizons. Phys. Rev. D 56, 4633 (1997). 57, 5311(E) (1998)

    Article  ADS  MathSciNet  Google Scholar 

  63. Lovelock, D.: The Einstein tensor and its generalizations. J. Math. Phys. 12(3), 498 (1971)

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Ghaffarnejad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghaffarnejad, H., Yaraie, E. & Farsam, M. Quintessence Reissner Nordström Anti de Sitter Black Holes and Joule Thomson Effect. Int J Theor Phys 57, 1671–1682 (2018). https://doi.org/10.1007/s10773-018-3693-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-018-3693-7

Keywords

Navigation