Skip to main content

Advertisement

Log in

Synthesis and characterization of calcium phosphate coatings on Nitinol

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

In recent years, coating of metal orthopedic implants with bioactive layers to promote fixation with bones has become increasingly common. Calcium phosphate coatings on the Nitinol surface were formed using two low-temperature methods: sol–gel and electrochemically assisted deposition. The coatings formed were characterized using: X-ray diffraction analysis, field emission scanning electron microscopy, energy dispersive X-ray spectroscopy, and Fourier transform infrared spectroscopy. Cyclic voltammetry studies were carried out in the deposition solution to determine parameters for electrodeposition and to understand electrochemistry of deposition. The barrier properties and corrosion resistance of coatings were tested in the physiological Hanks’ solution using electrochemical impedance spectroscopy. The sol–gel deposited coating consisted of two phases, hydroxyapatite and tricalcium phosphate (TCP). Apatite coatings containing TCP offered the opportunity to create a grafting material with high bioactivity and bioresorbility. The electrodeposited coating consisted of Ca-deficient HAp which resembles to biological HAp.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Hench LL (1998) Bioceramics. J Am Ceram Soc 81:1705–1728

    Article  CAS  Google Scholar 

  2. Dorotzhkin S, Epple M (2002) Biological and medical significance of calcium phosphates. Angew Chem Int Ed 41:3131–3146

    Google Scholar 

  3. Ratner BD, Hoffman AS, Schoen FJ, Lemons JE (eds) (2004) Biomaterials science an introduction to materials in medicine. Elsevier, San Diego

    Google Scholar 

  4. Orlovski VP, Komlev VS, Barinov SM (2002) Hydroxyapatite and Hydroxyapatite-Based Ceramics. Inorg Mater 38:1159–1172

    Google Scholar 

  5. Shabalovskaya SA (2002) Surface, corrosion and biocompatibility aspects of Nitinol as an implant material. Bio-Med Mater Eng 12:69–109

    CAS  Google Scholar 

  6. Figuerira N, Silva TM, Carmezin MJ, Fernandes JCS (2009) Corrosion behaviour of NiTi alloy. Electrochim Acta 54:921–926

    Article  Google Scholar 

  7. Shabalovskaya SA, Anderegg J, van Humbeeck J (2008) Critical overview of Nitinol surfaces and their modifications for medical applications. Acta Biomater 4:447–467

    Article  CAS  Google Scholar 

  8. Liu X, Chu PK, Ding C (2004) Critical overview of Nitinol surfaces and their modifications for medical applications. Mater Sci Eng R47:49–121

    Article  CAS  Google Scholar 

  9. Mohan L, Durgalakshmi D, Geetha M, Sankara Narayanan TSN, Asokamani R (2012) Electrophoretic deposition of nanocomposite (HAp + TiO2) on titanium alloy for biomedical applications. Ceram Int 38:3435–3443

    Article  CAS  Google Scholar 

  10. Dinda GP, Shin J, Mazumder J (2009) Pulsed laser deposition of hydroxyapatite thin films on Ti–6Al–4 V: effect of heat treatment on structure and properties. Acta Biomater 5:1821–1830

    Article  CAS  Google Scholar 

  11. Lewis G (2000) Hydroxyapatite-coated bioalloy surfaces: current status and future challenges. Biomed Mater Eng 10:157–188

    CAS  Google Scholar 

  12. Paital SR, Dahotre NB (2009) Calcium phosphate coatings for bio-implant applications: materials, performance factors, and methodologies. Mater Sci Eng R 66:1–70

    Article  Google Scholar 

  13. Weng W, Baptista JL (1999) Preparation and characterization of hydroxyapatite coatings on Ti6Al4V alloy by a sol–gel method. J Amer Ceram Soc 82:27–32

    Article  CAS  Google Scholar 

  14. Sun L, Berndt CC, Gross KA, Kucuk A (2001) Material fundamentals and clinical performance of plasma-sprayed hydroxyapatite coatings: a review. J Biomed Mater Res B 58:570–592

    Article  CAS  Google Scholar 

  15. Ramanan SR, Venkatesh R (2004) A study of hydroxyapatite fibers prepared via sol–gel route. Mater Lett 58:3320–3323

    Article  CAS  Google Scholar 

  16. Klein LC (1988) Sol–gel technology for thin films, fibers, preforms, electronics and specialty shapes. William Andrew Publishing, Noyes

    Google Scholar 

  17. Shirkhanzadeh M (1998) Direct formation of nanophase hydroxyapatite on cathodically polarized electrodes. J Mater Sci Mater Med 9:67–72

    Article  CAS  Google Scholar 

  18. Yang X, Zhang B, Lu J, Chen J, Zhang X, Gu Z (2010) Biomimetic Ca–P coating on pre-calcified Ti plates by electrodeposition method. Appl Surf Sci 256:2700–2704

    Article  CAS  Google Scholar 

  19. Gopi D, Indira J, Kavitha L (2012) A comparative study on the direct and pulsed current electrodeposition of hydroxyapatite coatings on surgical grade stainless steel. Surf Coat Technol 260:2859–2869

    Article  Google Scholar 

  20. Yen SK, Lin CM (2002) Cathodic reactions of electrolytic hydroxyapatite coating on pure titanium. Mater Chem Phys 77:70–76

    Article  Google Scholar 

  21. Eliaz N, Eliyahu M (2006) Electrochemical processes of nucleation and growth of hydroxyapatite on titanium supported by real-time electrochemical atomic force microscopy. J Biomed Mater Res A 80:621–634

    Google Scholar 

  22. Brinker CJ, Scherer GW (1992) Sol–gel science: the physics and chemistry of sol–gel processing. Academic Press, New York

    Google Scholar 

  23. Stoch A, Jastrzebski W, Dlugon E, Lejda W, Trybalska B, Stoch GJ, Adamczyk A (2005) Sol–gel derived hydroxyapatite coatings on titanium and its alloy Ti6Al4V. J Molecul Struct 744–747:633–640

    Article  Google Scholar 

  24. Sridhar TM, Kamachi Mudali U, Subbaiyan M (2003) Sintering atmosphere and temperature effects on hydroxyapatite coated type 316L stainless steel. Corr Sci 45:2337–2359

    Article  CAS  Google Scholar 

  25. Zhang JX, Guan RF, Zhang XP (2011) Synthesis and characterization of sol–gel hydroxyapatite coatings deposited on porous NiTi alloys. J Alloys Compd 509:4643–4648

    Article  CAS  Google Scholar 

  26. Liu DM, Yang Q, Troczynski T (2002) Sol–gel hydroxyapatite coatings on stainless steel substrates. Biomaterials 23:691–698

    Article  CAS  Google Scholar 

  27. Weng J, Liu X, Zhang X, Ji X (1994) Thermal decomposition of hydroxyapatite structure induced by titanium and its dioxide. J Mater Sci Lett 13:159–161

    Article  CAS  Google Scholar 

  28. Boukamp A (1986) A nonlinear least squares fit procedure for analysis of immittance data of electrochemical systems. Solid State Ionics 20:31–44

    Article  CAS  Google Scholar 

  29. International Centre for Diffraction Data, Joint Committee on Powder Diffraction Standards, Powder Diffraction File (1988), 1601 Park Lane, Swarthmore, PA 19081, USA

  30. Gross KA, Chai CS, Kannangara GSK, Ben-Nissan B (1998) Thin hydroxyapatite coatings via sol–gel synthesis. J Mater Sci:Mater Med 9:839–843

    CAS  Google Scholar 

  31. Katić J, Metikoš-Huković M, Babić R, Marciuš M (2013) Sol–gel Derived Biphasic Calcium Phosphate Ceramics on Nitinol for Medical Applications. Int J Electrochem Sci 8:1394–1408

    Google Scholar 

  32. Wei M, Ruys AJ, Swain MV, Kim SH, Milthorpe BK, Sorrell CC (1999) Interfacial bond strength of electrophoretically deposited hydroxyapatite coatings on metals. J Mater Sci: Mater Med 10:401–409

    CAS  Google Scholar 

  33. Wang ZC, Ni YJ, Huang JC (2008) Fabrication and characterization of HAp/Al2O3 composite coating on titanium substrate. Biomed Sci Eng 1:190–194

    Article  CAS  Google Scholar 

  34. Moskalewicz T, Czyrska-Filemonowicz A, Boccaccini AR (2007) Microstructure of nanocrystalline TiO2 films produced by electrophoretic deposition on Ti–6Al–7Nb alloy. Surf Coating Technol 201:7467–7471

    Article  CAS  Google Scholar 

  35. Wen CE, Xu W, Hu WY, Hodgson PD (2007) Hydroxyapatite/titania sol–gel coatings on titanium–zirconium alloy for biomedical applications. Acta Biomater 3:403–410

    Article  CAS  Google Scholar 

  36. Daculsi G (1998) Biphasic calcium phosphate concept applied to artificial bone, implant coating and injectable bone substitute. Biomaterials 19:1473–1478

    Article  CAS  Google Scholar 

  37. Le Huec JC, Clement D, Brouillaud B, Barthe N, Dupuy B, Foliguet B, Basse-Cathalinat B (1998) Evolution of the local calcium content around irradiated β-tricalcium phosphate ceramic implants: in vivo study in the rabbit. Biomaterials 19:733–738

    Article  Google Scholar 

  38. Lukacs Z (1999) Evaluation of model and dispersion parameters and their effects on the formation of constant-phase elements in equivalent circuits. J Electroanal Chem 464:68–75

    Article  CAS  Google Scholar 

  39. Macdonald JR (1987) Impedance Spectroscopy: emphasizing solid materials and systems. John Wiley & Sons, New York, pp 27–98

    Google Scholar 

  40. Brug GJ, van der Eeden ALG, Sluyters-Rehbach M, Sluyters JH (1984) The analysis of electrode impedances complicated by the presence of a constant phase element. J Electroanal Chem 176:275–295

    Article  CAS  Google Scholar 

  41. Orazem ME, Tribollet B (2008) Electrochemical impedance spectroscopy. John Wiley & Sons, Inc., Hoboken, pp 310–330

    Book  Google Scholar 

  42. Arbib M, Zhang B, Lazarov V, Stoychev D, Milchev A, Buess-Herman C (2001) Electrochemical nucleation and growth of rhodium on gold substrates. J Electroanal Chem 510:67–77

    Article  CAS  Google Scholar 

  43. Zhang JM, Lin CJ, Feng ZD, Tian ZW (1998) Mechanistic studies of electrodeposition for bioceramic coatings of calcium phosphates by an in situ pH-microsensor technique. J Electroanal Chem 452:235–240

    Article  CAS  Google Scholar 

  44. Kuo MC, Yen SK (2002) The process of electrochemical deposited hydroxyapatite coatings on biomedical titanium at room temperature. Mater Sci Eng C 20:153–160

    Article  Google Scholar 

  45. Southhampton Electrochemistry Group (2001) Instrumental methods in electrochemistry. Horwood Publishing Limited, Eastborne, pp 178–189

    Google Scholar 

  46. Nicholson RS, Shain I (1964) Theory of stationary electrode polarography. Single scan and cyclic methods applied to reversible, irreversible, and kinetic systems. Anal Chem 36:706–723

    Article  CAS  Google Scholar 

  47. Song Y, Zhang S, Li J, Zhao C, Zhang X (2010) Electrodeposition of Ca–P coatings on biodegradable Mg alloy: in vitro biomineralization behavior. Acta Biomater 6:1736–1742

    Article  CAS  Google Scholar 

  48. Prado Da Silva MH, Lima JHC, Soares GA, Elias CN, de Andrade MC, Best SM, Gibson IR (2001) Transformation of monetite to hydroxyapatite in bioactive coatings on titanium. Surf Coat Tech 137:270–276

    Article  CAS  Google Scholar 

  49. Vallet-Regi M, Gonzalez-Calbet JM (2004) Calcium phosphates as substitution of bone tissues. Prog Solid State Chem 32:1–31

    Article  CAS  Google Scholar 

  50. Müller L, Müller FA (2006) Preparation of SBF with different HCO3 content and its influence on the composition of biomimetic apatites. Acta Biomater 2:181–189

    Article  Google Scholar 

  51. Dumelie N, Benhayoune H, Richard D, Laurent-Maquin D, Balossier G (2008) In vitro precipitation of electrodeposited calcium-deficient hydroxyapatite coatings on Ti6Al4V substrate. Mater Charact 59:129–133

    Article  CAS  Google Scholar 

  52. Rehman I, Bonfield W (1997) Characterization of hydroxyapatite and carbonated apatite by photo acoustic FTIR spectroscopy. J Mater Sci Mater Med 8:1–4

    Article  CAS  Google Scholar 

  53. Popa MV, Moreno JMC, Popa M, Vasilescu E, Drob P, Vasilescu C, Drob SI (2011) Electrochemical deposition of bioactive coatings on Ti and Ti–6Al–4V surfaces. Surf Coating Techn 205:4776–4783

    Article  CAS  Google Scholar 

  54. Koutsopoulos S (2002) Synthesis and characterization of hydroxyapatite crystals: a review study on the analytical methods. J Biomed Mater Res 62:600–612

    Article  CAS  Google Scholar 

  55. Abo-Naf SM, El-Amiry MS, Abdel-Khalek AA (2008) FT-IR and UV–Vis optical absorption spectra of c-irradiated calcium phosphate glasses doped with Cr2O3, V2O5 and Fe2O3. Opt Mater 30:900–909

    Article  CAS  Google Scholar 

  56. Layrolle P, Ito A, Tateishi T (1998) Sol–gel synthesis of amorphous calcium phosphate and sintering into microporous hydroxyapatite bioceramics. J Am Ceram Soc 81:1421–1428

    Article  CAS  Google Scholar 

  57. Wang YJ, Chen JD, Wei K, Zhang SH, Wang XD (2006) Surfactant-assisted synthesis of hydroxyapatite particles. Mater Lett 60:3227–3231

    Article  CAS  Google Scholar 

  58. Chen J, Wang Y, Chen X, Ren L, Lai C, He W, Zhang Q (2011) A simple sol–gel technique for synthesis of nanostructured hydroxyapatite, tricalcium phosphate and biphasic powders. Mater Lett 65:1923–1926

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The financial support of the Ministry of Science, Education and Sports of the Republic of Croatia under the 125-0982904-2923 Grant is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mirjana Metikoš-Huković.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Katić, J., Metikoš-Huković, M. & Babić, R. Synthesis and characterization of calcium phosphate coatings on Nitinol. J Appl Electrochem 44, 87–96 (2014). https://doi.org/10.1007/s10800-013-0604-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-013-0604-8

Keywords

Navigation