Skip to main content
Log in

Selective bioaccumulation of rubidium by microalgae from industrial wastewater containing rubidium and lithium

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

An Erratum to this article was published on 13 September 2017

This article has been updated

Abstract

Bioaccumulation of rubidium (Rb+) and lithium (Li+) from alkaline wastewater containing 480 mg L−1 Rb+ and 540 mg L−1 Li+, a by-product of zinnwaldite processing, was studied at laboratory scale using growing freshwater microalgae (Chlorella vulgaris, Desmodesmus quadricauda and Scenedesmus obliquus). Bioaccumulation of Li+ was very low, while the bioaccumulation of Rb+ was significant by all tested strains. The best result was found for C. vulgaris, which accumulated 54% of the original amount of rubidium in growth media (48 mg L−1) within 4 days. In addition, the wastewater did not affect the growth rate of C. vulgaris. The effect of potassiun (K+) concentration on total bioaccumulation of alkali metal ions and its selectivity by C. vulgaris was also tested. The highest K+ concetration (334 mg L−1) resulted in bioaccumulation of 4.3 mg Rb+ per gram of biomass with Rb+:Li+ uptake ratio of 26.9. By decreasing the K+ concetration in medium (56 mg L−1), the total bioaccumulation improved (4.70 Li+ per gram of biomass, 5.93 Rb+ per gram of biomass) but at the cost of lower selectivity (Rb+:Li+ uptake ratio 1.3). These findings have a potential of practical utilization, as both Rb+ and Li+can be recovered from biomass by incineration and subsequent chemical separation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Change history

  • 13 September 2017

    An erratum to this article has been published.

References

  • Ajayan KV, Selvaraju M, Thirugnanamoorthy K (2011) Growth and heavy metals accumulation potential of microalgae grown in sewage wastewater and petrochemical effluents. Pak J Biol Sci 14:805–811

    Article  CAS  PubMed  Google Scholar 

  • Arunakumara KKIU, Zhang X (2008) Heavy metal bioaccumulation and toxicity with special reference to microalgae. J Ocean Univ China 7:60–64

    Article  CAS  Google Scholar 

  • Branyikova I, Marsalkova B, Doucha J, Branyik T, Bisova K, Zachleder V, Vitova M (2011) Microalgae-novel highly efficient starch producers. Biotechnol Bioeng 108:766–776

    Article  CAS  PubMed  Google Scholar 

  • Butterman WC, Reese RG Jr (2003) Mineral commodity profiles rubidium. U.S. Geological Survey, Open-File Report 03–045. https://pubs.usgs.gov/of/2003/of03-045/of03-045.pdf. Accessed 7 Aug 2017

  • Campbell LM, Fisk AT, Wang XW, Kock G, Muir DCG (2005) Evidence for biomagnification of rubidium in freshwater and marine food webs. Can J Fish Aquat Sci 62:1161–1167

    Article  CAS  Google Scholar 

  • Doshi H, Ray A, Kothari IL (2007) Biosorption of cadmium by live and dead Spirulina: IR spectroscopic, kinetics, and SEM studies. Curr Microbiol 54:213–218

    Article  CAS  PubMed  Google Scholar 

  • Doshi H, Seth C, Ray A, Kothari IL (2008) Bioaccumulation of heavy metals by green algae. Curr Microbiol 56:246–255

    Article  CAS  PubMed  Google Scholar 

  • Douskova I, Doucha J, Livansky K, Machat J, Novak P, Umysova D, Zachleder V, Vitova M (2009) Simultaneous flue gas bioremediation and reduction of microalgal biomass production costs. Appl Microbiol Biotechnol 82:179–185

    Article  CAS  PubMed  Google Scholar 

  • EPA–U.S. Environmental Protection Agency (1996) Method 3050B acid digestion of sediments, sludges, and soils

  • Gin K, Tang YZ, Aziz MA (2001) Heavy metal uptake by algae. In: Kojima H, Lee YK (eds) Photosynthetic microorganisms in environmental biotechnology. Springer, Berlin, pp 137–169

    Google Scholar 

  • Jandova J, Dvorak P, Vu HN (2010) Processing of zinnwaldite waste to obtain Li2CO3. Hydrometallurgy 103:12–18

    Article  CAS  Google Scholar 

  • Jandova J, Dvorak P, Formanek J, Vu HN (2012a) Recovery of rubidium and potassium alums from lithium-bearing minerals. Hydrometallurgy 119:73–76

    Article  Google Scholar 

  • Jandova J, Dvorak P, Kondas J, Havlak L (2012b) Recovery of lithium from waste materials. Ceramics-Silikaty 56(1):50–54

    CAS  Google Scholar 

  • Kaplan D (2013) Absorption and adsorption of heavy metals by microalgae. In: Richmond A, Hu Q (eds) Handbook of microalgal culture: applied phycology and biotechnology. Wiley, London, pp 602–611

    Chapter  Google Scholar 

  • Kosla T, Skibniewska E, Debski B, Urbanska-Slomka G (2002) Rubidium in the trophic chain soil-plants-animals. Trace Elem Electrolytes 19:171–176

    CAS  Google Scholar 

  • Kumar K, Ghosh S, Angelidaki I, Holdt SL, Karakashev DB, Morales MA, Das D (2016) Recent developments on biofuels production from microalgae and macroalgae. Renew Sust Energ Rev 65:235–249

    Article  CAS  Google Scholar 

  • Marczenko Z, Balcerzak M (2000) Alkali metals. In: Kloczko E (ed) Separation, preconcentration and spectrophotometry in inorganic analysis, 1st edn. Elsevier Science, Amsterdam, p 77–82

  • Mehta SK, Gaur JP (2005) Use of algae for removing heavy metal ions from wastewater: progress and prospects. Crit Rev Biotechnol 25:113–152

    Article  CAS  PubMed  Google Scholar 

  • Mohite BS, Khopkar SM (1985) Solvent-extraction separation of rubidium with dicyclohexano-18-crown-6. Talanta 32:565–567

    Article  CAS  PubMed  Google Scholar 

  • Nespurkova L, Rybova R, Janacek K (1987) Parallel pathways of potassium transport in the alga Hydrodictyon-reticulatum. Effects of calcium. Gen Physiol Biophys 6:263–270

    CAS  PubMed  Google Scholar 

  • Nilsa GMBH (2017) Berlin, Germany, world-wide electronic catalog. http://alkalmetals.com/index.php/rubidium-metal; searched on 17 Jul 2017

  • Rezvani S, Moheimani NR, Bahri PA (2016) Techno-economic assessment of CO2 bio-fixation using microalgae in connection with three different state-of-the-art power plants. Comput Chem Eng 84:290–301

    Article  CAS  Google Scholar 

  • Ritchie RJ (1997) Rubidium transport in the cyanobacterium Synechococcus R-2 (Anacystis nidulans, S. leopoliensis) PCC 7942. Plant Cell Environ 20:907–918

    Article  CAS  Google Scholar 

  • Rubidium (2012) Rubidium element facts. http://www.chemicool.com/elements/rubidium.html; searched on 3 Feb 2017

  • Sigma-Aldrich Corp (2017) St. Louis, MO, USA, world-wide electronic catalog. http://www.sigmaaldrich.com/catalog/product/aldrich/276332?lang=en&region=CZ&gclid=EAIaIQobChMIkc-r876Q1QIVQ7cbCh3ljQvAEAAYASAAEgIIZPD_BwE; searched on 17 Jul 2017

  • Smart-elements GmbH (2017) Vienna, Austria, world-wide electronic catalog. http://www.smart-elements.com/Rb; searched on 17 Jul 2017

  • Usuda K, Kono R, Ueno T, Ito Y, Dote T, Yokoyama H, Kono K, Tamaki J (2014) Risk assessment visualization of rubidium compounds: comparison of renal and hepatic toxicities, in vivo. Biol Trace Elem Res 159:263–268

    Article  CAS  PubMed  Google Scholar 

  • West KR, Pitman MG (1967) Rubidium as a tracer for potassium in the marine algae Ulva lactula L. and Chaetomorpha darwinii (Hooker) Kuetzing. Nature 214:1262–1263

    Article  CAS  Google Scholar 

  • Wilde EW, Benemann JR (1993) Bioremoval of heavy metals by the use of microalgae. Biotechnol Adv 11:781–812

    Article  CAS  PubMed  Google Scholar 

  • Xin CH, Addy MM, Zhao JY, Cheng YL, Cheng SB, Mu DY, Liu YH, Ding RJ, Chen P, Ruan R (2016) Comprehensive techno-economic analysis of wastewater-based algal biofuel production: a case study. Bioresour Technol 211:584–593

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Technology Agency of the Czech Republic, project no TE01020080.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irena Brányiková.

Additional information

The original version of this article was revised: The original version of this article unfortunately contained a mistake. Figures 1 and 2 were interchanged. The correct Figures 1 and 2 are now shown here.

An erratum to this article is available at https://doi.org/10.1007/s10811-017-1253-9.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaštánek, P., Kronusová, O., Kaštánek, F. et al. Selective bioaccumulation of rubidium by microalgae from industrial wastewater containing rubidium and lithium. J Appl Phycol 30, 461–467 (2018). https://doi.org/10.1007/s10811-017-1236-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-017-1236-x

Keywords

Navigation