Skip to main content
Log in

Safety evaluation and antiobesogenic effect of Sargassum liebmannii J. Agardh (Fucales: Phaeophyceae) in rodents

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

Sargassum has been used as a supplement diet in domestic animals with a hypolipidemic effect. However, Sargassum is a marine alga that bioaccumulates heavy metals. Marine forests of Sargassum liebmannii develop on the Mexican coasts (North Pacific), and it could be employed as a functional food. Nevertheless, it is necessary to prove its safety regarding intake. This study aimed to examine S. liebmannii for chemical composition, heavy-metal quantification, acute and subchronic toxicities, and its antiobesogenic effect. Sargassum liebmannii provides 790.24 kJ (100 g)−1 and it bioaccumulates higher levels of arsenic (11.2165 ± 0.2793 ppm) compared to zinc, nickel, chromium, copper, lead, cadmium, and mercury (0.0059–0.0437 ppm). The acute toxicity was evaluated in C57BL/6J male mice, obtaining LD50 > 10 g kg−1, and it did not produce any sign of toxicity within 7 days of feeding without histological damage in the stomach, intestine, liver, and kidneys. For the subchronic toxicity and antiobesogenic effect, a diet with 20% S. liebmannii was used in Sprague Dawley male rats for 11 weeks. During the study, the animals fed the Sargassum diet did not show toxicity signs, but body weight gain and energy intake were reduced and insulin sensitivity increased. During the end treatment, the adipose tissue decreased 31.5% from the control. The hematology, clinical biochemistry, and the oxidative stress and cellular damage in the stomach, intestine, liver, and kidneys did not show alterations. These results suggest that a S. liebmannii–supplemented diet (Sls-d) is safe and that it has an antiobesogenic effect in rodents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aeda HAM, Osokawa MAH, Ashima TOS, Iyashita KAM (2007) Dietary combination of fucoxanthin and fish oil attenuates the weight gain of white adipose tissue and decreases blood glucose in obese / diabetic KK-A mice dietary combination of fucoxanthin and fish oil attenuates the weight gain of white adipose tissue. J Agric Food Chem 1:7701–7706

    Google Scholar 

  • Albert C, Ashauer R, Künsch HR, Reichert P (2012) Bayesian experimental design for a toxicokinetic-toxicodynamic model. J Stat Plan Inference 142:263–275

    Article  Google Scholar 

  • Alexander PW, Hartati RD, Curtin J (1989) Automated potentiometric end point determination in the Lane-Eynon titration of reducing sugars. Electroanalysis 1:263–269

    Article  CAS  Google Scholar 

  • Asakai T, Murayama M, Tanaka T (2007) Precise coulometric titration of sodium thiosulfate and development of potassium iodate as a redox standard. Talanta 73:346–351

    Article  CAS  PubMed  Google Scholar 

  • Bilal M, Rasheed JE, Sosa-Hernández A, Raza F, Nabeel HMN (2018) Biosorption: an interplay between marine algae and potentially toxic elements-a review. Mar Drugs 16:65

    Article  CAS  PubMed Central  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Bradstreet RB (1954) Kjeldahl method for organic nitrogen. Anal Chem 26:185–187

    Article  CAS  Google Scholar 

  • Bryan GW, Langston WJ (1992) Bioavailability, accumulation and effects of heavy metals in sediments with special reference to United Kingdom estuaries: a review. Environ Pollut 76:89–131

    Article  CAS  PubMed  Google Scholar 

  • Cardoso SM, Pereira OR, Seca AML, Pinto DCGA, Silva AMS (2015) Seaweeds as preventive agents for cardiovascular diseases: from nutrients to functional foods. Mar Drugs 13:6838–6865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carrillo S, Bahena A, Casas M, Carranco ME, Calvo CC, Ávila E, Pérez-Gil F (2012) The alga Sargassum spp. as alternative to reduce egg cholesterol content. Cuba J Agric Sci 46:181–186

    Google Scholar 

  • Casas-Valdez M, Portillo-Clark G, Aguila-Ramírez N, Rodríguez-Astudillo S, Sánchez-Rodríguez I, Carrillo-Domínguez S (2006) Effect of the marine algae Sargassum spp. on the productive parameters and cholesterol content of the brown shrimp, Farfantepenaeus californiensis (Holmes, 1900). Rev Biol Mar Oceanogr 41:97–105

    Article  Google Scholar 

  • Chávez-Capilla TM, Beshai W, Maher T, Kelly S, Foster (2016) Bioaccessibility and degradation of naturally occurring arsenic species from food in the human gastrointestinal tract. Food Chem 212:189–197

    Article  CAS  PubMed  Google Scholar 

  • Clark MJ, Slavin JL (2013) The effect of fiber on satiety and food intake: a systematic review. J Am Coll Nutr 32:200–211

    Article  CAS  PubMed  Google Scholar 

  • Codex Alimentarious. (2009) CODEX STAN 193-1995 page 1 of 44. Nat Toxins

  • Conner EM, Grisham MB (1996) Inflammation, free radicals and antioxidants. Nutrition 12:274–277

    Article  CAS  PubMed  Google Scholar 

  • De la Lanza-Espino G, Penié-Rodríguez I, Hernández-Pulido S (2004) Spatiotemporal variation of phosphorus and the effect of local currents on its distribution in Petacalco Bay, Guerrero. Mexico Ciencias Mar 30:311–322

    Article  Google Scholar 

  • Gammone MA, D’Orazio N (2015) Anti-obesity activity of the marine carotenoid fucoxanthin. Mar Drugs 13:2196–2214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gekeler W, Grill E, Winnacker EL, Zenk MH (1988) Algae sequester heavy metals via synthesis of phytochelatin complexes. Arch Microbiol 2:197–202

    Article  Google Scholar 

  • Gotama TL, Husni A, Ustadi (2018) Antidiabetic activity of Sargassum hystrix extracts in streptozotocin-induced diabetic rats. Prev Nutr Food Sci 23:189–195

    Article  PubMed  PubMed Central  Google Scholar 

  • Hodge A, Sterner B (2005) Toxicity classes. In: Canadian Center for Occupational Health and Safety. https://www.ccohs.ca/oshanswers/chemicals/id50.html; searched on 5 november 2018

  • Howarth NC, Saltzman E, Roberts SB (2009) Dietary fiber and weight regulation. Nutr Rev 59:129–139

    Article  Google Scholar 

  • Jomova K, Valko M (2011) Advances in metal-induced oxidative stress and human disease. Toxicology 283:65–87

    Article  CAS  PubMed  Google Scholar 

  • Lee JS, Han JS (2018) Sargassum sagamianum extract alleviates postprandial hyperglycemia in diabetic mice. Prev Nutr food Sci 23:122–126

    Article  PubMed  PubMed Central  Google Scholar 

  • Li Y, Fu X, Duan D, Xu J, Gao X (2018) Comparison study of bioactive substances and nutritional components of brown algae Sargassum fusiforme strains with different vesicle shapes. J Appl Phycol 30:3271–3283

    Article  CAS  Google Scholar 

  • Lorke D (1983) A new approach to practical acute toxicity testing. Arch Toxicol 54:275–287

    Article  CAS  PubMed  Google Scholar 

  • Maeda H, Hosokawa M, Sashima T, Funayama K, Miyashita K (2005) Fucoxanthin from edible seaweed, Undaria pinnatifida, shows antiobesity effect through UCP1 expression in white adipose tissues. Biochem Biophys Res Commun 332:392–397

    Article  CAS  PubMed  Google Scholar 

  • Marín A, Casas-Valdez M, Carrillo S, Hernández H, Monroy A, Sanginés L, Pérez-Gil F (2009) The marine algae Sargassum spp. (Sargassaceae) as feed for sheep in tropical and subtropical regions. Rev Biol Trop 57:1271–1281

    PubMed  Google Scholar 

  • Memije-Lazaro IN, Blas-Valdivia V, Franco-Colín M, Cano-Europa E (2018) Arthrospira maxima ( Spirulina ) and C-phycocyanin prevent the progression of chronic kidney disease and its cardiovascular complications. J Funct Foods 43:37–43

  • Miao LW, Yan L, Zhong XW (2014) Effect of heavy metals (Cu, Pb, and As) on the ultrastructure of Sargassum pallidum in Daya Bay. China Environ Monit Assess 186:87–95

    Article  CAS  PubMed  Google Scholar 

  • Mohamed S, Hashim SN, Rahman HA (2012) Seaweeds: a sustainable functional food for complementary and alternative therapy. Trends Food Sci Technol 23:83–96

    Article  CAS  Google Scholar 

  • Norma Mexicana NMX-F-607-NORMEX-2002. Determinación de cenizas en alimentos. Diario Oficial de la Federación, 8 de agosto del 2002. México, DF

  • Norma Mexicana NMX-F-608-NORMEX-2011. Determinación de proteínas en alimentos. Diario Oficial de la Federación, 12 de septiembre del 2011. México, DF

  • Norma Mexicana NMX-F-615-NORMEX-2004. Alimentos-determinación de extracto etéreo (método Soxhlet) en alimentos-método de prueba. Diario Oficial de la Federación, 1 de mayo del 2004. México, DF

  • Norma Oficial Mexicana NMX-F-150-S-1981. Determinación de cloruro de sodio en salmueras. Diario Oficial de la Federación, 19 de noviembre de 1981. México, DF

  • Norma Oficial Mexicana NOM-051-SCFI/SSA1-2010. Especificaciones generales de etiquetado para alimentos y bebidas no alcohólicas preenvasados-información comercial y sanitaria. Diario Oficial de la Federación, 18 de febrero del 2010. México, DF

  • Norma Oficial Mexicana NOM-086-SSA1-1994. Bienes y servicios. Alimentos y bebidas no alcohólicas con modificaciones en su composición. Especificaciones nutrimentales. Diario Oficial de la Federación, 26 de junio 1996

  • Normal Oficial Mexicana NOM -116-SSA1-1994. Bienes y servicios. Determinación de humedad en alimentos por tratamiento térmico. Método por arena o gasa. Diario Oficial de la Federación, 15 de agosto de 1994. México, DF

  • Norris FA, Buswell RJ (1943) Rapid iodine number determinations. Ind Eng Chem Anal Ed 15:258–259

    Article  CAS  Google Scholar 

  • Pan Y, Wernberg T, de Bettignies T, Holmer M, Li K, Wu J, Lin F, Yu Y, Xu J, Zhou J, Huang Z, Xiao X (2018) Screening of seaweeds in the East China Sea as potential bio-monitors of heavy metals. Environ Sci Pollut Res 25:16640–16651

    Article  CAS  Google Scholar 

  • Peng J, Yuan JP, Wu CF, Wang JH (2011) Fucoxanthin, a marine carotenoid present in brown seaweeds and diatoms: metabolism and bioactivities relevant to human health. Mar Drugs 9:1806–1828

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Phillips N (1995) Biogeography of Sargassum (Phaeophyta) in the Pacific basin. In: Abbott IA (ed) Taxonomy of Economic Seaweeds, Vol 5. California Sea Grant College System, La Jolla pp 107–145

  • Poo KM, Son EB, Chang JS, Ren X, Choi YJ, Chae KJ (2018) Biochars derived from wasted marine macro-algae (Saccharina japonica and Sargassum fusiforme) and their potential for heavy metal removal in aqueous solution. J Environ Manag 206:364–372

    Article  CAS  Google Scholar 

  • Proyecto de Norma Mexicana PROY-NMX-Y-358-SCFI-2006. Alimentos para animales determinación del índice de yodo, método de Hanus. Diario Oficial de la Federación, 2 de octubre del 2006. México, DF

  • Rhein-Knudsen N, Ale MT, Ajalloueian F, Meyer AS (2017) Characterization of alginates from Ghanaian brown seaweeds: Sargassum spp. and Padina spp. Food Hydrocoll 71:236–244

    Article  CAS  Google Scholar 

  • Rodríguez-Montesinos YE, Arvizu-Higuera DL, Hernández-Carmona G (2008) Seasonal variation on size and chemical constituents of Sargassum sinicola Setchell et Gardner from Bahía de la Paz, Baja California Sur. Mexico Phycol Res 56:33–38

    Article  Google Scholar 

  • Rodríguez-Sánchez R, Ortiz-Butrón R, Blas-Valdivia V, Hernández-García A, Cano-Europa E (2012) Phycobiliproteins or C-phycocyanin of Arthrospira (Spirulina) maxima protect against HgCl2-caused oxidative stress and renal damage. Food Chem 135:2359–2365

    Article  CAS  PubMed  Google Scholar 

  • Sanjeewa KKA, Kang N, Ahn G, Jee Y, Kim YT, Jeon YJ (2018) Bioactive potentials of sulfated polysaccharides isolated from brown seaweed Sargassum spp in related to human health applications: a review. Food Hydrocoll 81:200–208

    Article  CAS  Google Scholar 

  • Setchell WA (1924) New marine algae from the Gulf of California. Proc Calif Acad Sci 4:695–949

    Google Scholar 

  • Shanura F, Sanjeewa KKA, Kim SY, Lee JS, Jeon YJ (2018) Reduction of heavy metal (Pb2+) biosorption in zebrafish model using alginic acid purified from Ecklonia cava and two of its synthetic derivatives. Int J Biol Macromol 106:330–337

    Article  CAS  Google Scholar 

  • Short EI (1954) The estimation of total nitrogen using the Conway micro-diffusion cell. J Clin Pathol 7:81–83

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Slavin JL (2005) Dietary fiber and body weight. Nutrition 21:411–418

    Article  PubMed  Google Scholar 

  • Taylor WR (1945) Pacific marine algae of the Allan Hancock expeditions to the Galapagos Islands. Allan Hancock Pacific Exped. University of Southern California Press, Los Angeles

  • The Organization of Economic Co-operation and Development (OECD) (1998) Repeated dose 90-day oral toxicity study in rodents. Test 1–10, France

  • The Organization of Economic Co-operation and Development (OECD) (2001) OECD guidelines for the testing of chemicals, Section 4, Test No. 425: Acute Oral Toxicity - Up-and-Down Procedure. Guidel. Test. Chem. 26, France

  • Valko M, Morris H, Cronin M (2005) Metals, toxicity and oxidative stress. Curr Med Chem 12:1161–1208

    Article  CAS  PubMed  Google Scholar 

  • Wan-Loy C, Siew-Moi P (2016) Marine algae as a potential source for anti-obesity agents. Mar Drugs 14:222

    Article  CAS  PubMed Central  Google Scholar 

  • WHO (2000) General guidelines for methodologies on research and evaluation of traditional medicine. WHO-Geneva Vol 1, pp 1–74

    Google Scholar 

Download references

Acknowledgements

This study was partially supported by CONACyT (221057) and SIP-IPN (20181115; 20180911, 20181768). We thank INSTITUTO POLITÉCNICO NACIONAL, CONACyT for the financial support and CIIEMAD for the technical support. The researchers are fellows of EDI, COFAA, and SNI. Edgar Cano-Europa thanks COTEBAL for its support this year.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edgar Cano-Europa.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tapia-Martinez, J., Hernández-Cruz, K., Franco-Colín, M. et al. Safety evaluation and antiobesogenic effect of Sargassum liebmannii J. Agardh (Fucales: Phaeophyceae) in rodents. J Appl Phycol 31, 2597–2607 (2019). https://doi.org/10.1007/s10811-019-1752-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-019-1752-y

Keywords

Navigation