Skip to main content
Log in

The complete plastid genomes of Betaphycus gelatinus, Eucheuma denticulatum, and Kappaphycus striatus (Solieriaceae: Rhodophyta) and their phylogenetic analysis

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

Betaphycus, Eucheuma and Kappaphycus (Gigartinales, Florideophyceae) are the most commercially important genera of the family Solieriaceae that produce carrageenan. Here, three complete plastid genomes of Betaphycus gelatinus, Eucheuma denticulatum and Kappaphycus striatus were fully sequenced using next-generation sequencing technology. Genome organizations and gene contents of the three plastid genomes were highly alike. They all had circular mapping organizations and the sizes were 178,394 bp (B. gelatinus), 177,003 bp (E. denticulatum), and 176,763 bp (K. striatus). They encoded almost the same set of plastid genes (238–240), including 202 to 204 protein-encoding genes, 30 transfer RNA genes (tRNAs), 3 ribosomal RNA genes (rRNAs), 2 misc_RNAs (ffs, rnpB), and 1 transfer-messenger RNA gene (tmRNA). One group II intron interrupting the trnMe gene was identified in each of these three plastid genomes. Other three plastid genomes from species of the order Gigartinales including Kappaphycus alvarezii, Chondrus crispus and Mastocarpus papillatus have been reported. The plastid genome organization at the level of the order Gigartinales was highly conserved. Co-linear analysis among the six plastid genomes of the Gigartinales showed the considerable sequence synteny with the exception of one remarkable gene rearrangement. The approximately 12.5-kb gene fragment from gene psaM to ycf21 in plastid genomes of the four species of the Solieriaceae was completely reversed compared to that of M. papillatus and C. crispus. It might be used as the potential phylogenetic markers uniting the species of the Solieriaceae. In addition, phylogenetic analysis based on 138 shared protein-encoding genes from 53 Florideophyceae plastid genomes indicated all species were clearly divided into five clades corresponding to their subclasses. The results suggested there was a non-monophyletic relationship of the order Gigartinales. Four species of the family Solieriaceae formed one clade and E. denticulatum was basal relative to the other three species. The novel plastid genomes expand the available plastid pool for red algae which would facilitate the phylogenetic study in algae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adnan H, Porse H (1987) Culture of Eucheuma cottonii and Eucheuma spinosum in Indonesia. Hydrobiologia 151:355–358

    Google Scholar 

  • Boudreau E, Turmel M (1995) Gene rearrangements in Chlamydomonas chloroplast DNAs are accounted for by inversions and by the expansion/contraction of the inverted repeat. Plant Mol Biol 27:351–364

    CAS  PubMed  Google Scholar 

  • Castresana J (2000) Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol 17:540–552

    CAS  PubMed  Google Scholar 

  • Cho CH, Choi JW, Lam DW, Kim KM, Yoon HS, Devarenne TP (2018) Plastid genome analysis of three nemaliophycidae red algal species suggests environmental adaptation for iron limited habitats. PLoS One 13:e0196995

    PubMed  PubMed Central  Google Scholar 

  • Collén J, Porcel B, Carré W, Ball SG, Chaparro C, Tonon T, Barbeyron T, Michel G, Noel B, Valentin K, Elias M, Artiguenave F, Arun A, Aury JM, Barbosa-Neto JF, Bothwell JH, Bouget FY, Brillet L, Cabello-Hurtado F, Capella-Gutiérrez S, Charrier B, Cladière L, Cock JM, Coelho SM, Colleoni C, Czjzek M, da Silva C, Delage L, Denoeud F, Deschamps P, Dittami SM, Gabaldón T, Gachon CM, Groisillier A, Hervé C, Jabbari K, Katinka M, Kloareg B, Kowalczyk N, Labadie K, Leblanc C, Lopez PJ, McLachlan D, Meslet-Cladiere L, Moustafa A, Nehr Z, Nyvall Collén P, Panaud O, Partensky F, Poulain J, Rensing SA, Rousvoal S, Samson G, Symeonidi A, Weissenbach J, Zambounis A, Wincker P, Boyen C (2013) Genome structure and metabolic features in the red seaweed Chondrus crispus shed light on evolution of the Archaeplastida. Proc Natl Acad Sci U S A 110:5247–5252

    PubMed  PubMed Central  Google Scholar 

  • Conklin KY, Kurihara A, Sherwood AR (2009) A molecular method for identification of the morphologically plastic invasive algal genera Eucheuma and Kappaphycus (Rhodophyta, Gigartinales) in Hawaii. J Appl Phycol 21:691–699

  • Corguille GL, Pearson G, Valente M, Viegas C, Gschloessl B, Corre E (2009) Plastid genomes of two brown algae, Ectocarpus siliculosus and Fucus vesiculosus: further insights on the evolution of red-algal derived plastids. BMC Evol Biol 9:253

    PubMed  PubMed Central  Google Scholar 

  • Darriba D, Taboada GL, Doallo R, Posada D (2011) ProtTest 3: fast selection of best-fit models of protein evolution. Bioinformatics 27:1164–1165

    CAS  PubMed  Google Scholar 

  • Doty MS, Norris JN (1985) Eucheuma species (Solieriaceae, Rhodophyta) that are major sources of carrageenan. In: Abbott IA (ed) Taxonomy of economic seaweeds. California Sea Grant College Program, La Jolla, pp 47–61

    Google Scholar 

  • Duanmu D, Casero D, Dent RM, Gallaher S, Yang W, Rockwell NC, Martin SS, Pellegrini M, Niyogi KK, Merchant SS, Grossman AR, Lagarias JC (2013) Retrograde bilin signaling enables Chlamydomonas greening and phototrophic survival. Proc Natl Acad Sci U S A 110:3621–3626

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dumilag RV, Liao LM, Lluisma AO (2014) Phylogeny of Betaphycus (Gigartinales, Rhodophyta) as inferred from COI sequences and morphological observations on B. philippinensis. J Appl Phycol 26:587–595

    Google Scholar 

  • Fredericq S, Freshwater DW, Hommersand MH (1999) Observations on the phylogenetic systematics and biogeography of the Solieriaceae (Gigartinales, Rhodophyta) inferred from rbcL sequences and morphological evidence. Hydrobiologia 398:25–38

    Google Scholar 

  • Gao L, Yi X, Yang YX, Su YJ, Wang T (2009) Complete chloroplast genome sequence of a tree fern Alsophila spinulosa: insights into evolutionary changes in fern chloroplast genomes. BMC Evol Biol 9:130

    PubMed  PubMed Central  Google Scholar 

  • Gao L, Su YJ, Wang T (2010) Plastid genome sequencing, comparative genomics, and phylogenomics: current status and prospects. J Syst Evol 48:77–93

    Google Scholar 

  • de Góes HG, Reis RP (2011) An initial comparison of tubular netting versus tie–tie methods of cultivation for Kappaphycus alvarezii (Rhodophyta, Solieriaceae) on the south coast of Rio de Janeiro state, Brazil. J Appl Phycol 23:607–613

    Google Scholar 

  • Golderer G, Dlaska M, Grobner P, Piendl W (1995) TTG serves as an initiation codon for the ribosomal protein MvaS7 from the Archaeon Methanococcus vannielii. J Bacteriol 177:5994–5996

    CAS  PubMed  PubMed Central  Google Scholar 

  • Graf L, Kim YJ, Cho GY, Miller KA, Yoon HS (2017) Plastid and mitochondrial genomes of Coccophora langsdorfii (Fucales, Phaeophyceae) and the utility of molecular markers. PLoS One 12:e0187104

    PubMed  PubMed Central  Google Scholar 

  • Greiner S, Lehwark P, Bock R (2019) Organellar genome DRAW (OGDRAW) version 1.3.1: expanded toolkit for the graphical visualization of organellar genomes. Nucleic Acids Res 47:59–64

    Google Scholar 

  • Guiry MD, Guiry GM (2020) AlgaeBase. World-wide electronic publication, National University of Ireland, Galway https://www.algaebase.org; searched on 06 March 2020

  • Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  • Heather JM, Chain B (2016) The sequence of sequencers: the history of sequencing DNA. Genomics 107:1–8

    CAS  PubMed  Google Scholar 

  • Huelsenbeck JP, Ronquist F (2001) Mrbayes: bayesian inference of phylogenetic trees. Bioinformatics 17:754–755

    CAS  PubMed  Google Scholar 

  • Janouškovec J, Liu SL, Martone PT, Carré W, Leblanc C, Keeling PJ (2013) Evolution of red algal plastid genomes: ancient architectures, introns, horizontal gene transfer, and taxonomic utility of plastid markers. PLoS One 8:e59001

    PubMed  PubMed Central  Google Scholar 

  • Ji L, Xie SL, Feng J (2010) Progress in chloroplast genome of algae. Acta Botan Boreali-Occiden Sin 1:214–220 (in Chinese with English abstract)

    Google Scholar 

  • Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, Buxton S, Cooper A, Markowitz S, Duran C, Thierer T, Ashton B, Meintjes P, Drummond A (2012) Geneious basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28:1647–1649

    PubMed  PubMed Central  Google Scholar 

  • Lee JM, Cho CH, Park SI, Ji WC, Song HS, West JA, Bhattacharya D, Yoon HS (2016) Parallel evolution of highly conserved plastid genome architecture in red seaweeds and seed plants. BMC Biol 14:75

    PubMed  PubMed Central  Google Scholar 

  • Li Y, Liu N, Wang X, Tang X, Zhang L, Meinita MDN, Wang G, Yin H, Jin Y, Wang H, Liu C, Chi S, Liu T, Zhang J (2018) Comparative genomics and systematics of Betaphycus, Eucheuma, and Kappaphycus (Solieriaceae: Rhodophyta) based on mitochondrial genome. J Appl Phycol 30:3435–3443

    CAS  Google Scholar 

  • Lim PE, Tan J, Phang SM, Nikmatullah A, Hong DD, Sunarpi H, Hurtado AQ (2014) Genetic diversity of Kappaphycus Doty and Eucheuma J. Agardh (Solieriaceae, Rhodophyta) in Southeast Asia. J Appl Phycol 26:1253–1272

    Google Scholar 

  • Lim PE, Yang LE, Tan J, Meggs CA, Brodie J (2017) Advancing the taxonomy of economically important red seaweeds (Rhodophyta). Eur J Phycol 52:438–451

    Google Scholar 

  • Liu F, Pang SJ (2016) Chloroplast genome of Sargassum horneri (Sargassaceae, Phaeophyceae): comparative chloroplast genomics of brown algae. J Appl Phycol 28:1419–1426

    CAS  Google Scholar 

  • Liu CL, Huang XH, Liu JG (2009) The primary application of ISSR analysis on strains identification of Kappaphycus alvarezii. Mar Sci 33:50–53

    CAS  Google Scholar 

  • Liu T, Sun Y, Jin YM, Liu C, Zhang L, Zhang S (2012) Study on molecular systematics of four seaweed species in family Solieriaceae (Rhodophyta). Periodical Ocean Univ China 42:39–48 (in Chinese with English abstract)

    CAS  Google Scholar 

  • Liu T, Yang SG, Wu XY, Chen WZ, Zhang J, Tang XM (2018) Complete plastid genome of Gracilaria bailiniae (Rhodophyta) and phylogenetic analysis. Mitochondrial DNA B 4:10–11

    Google Scholar 

  • Liu N, Zhang L, Tang XM, Wang XM, Meinita NMD, Wang GL, Chen W, Liu T (2019) Complete plastid genome of Kappaphycus alvarezii: insights of large-scale rearrangements among Florideophyceae plastid genomes. J Appl Phycol 31:3997–4005

    CAS  Google Scholar 

  • Luo R, Liu B, Xie Y, Li Z, Huang W, Yuan J (2012) SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler. GigaScience 1:18

    PubMed  PubMed Central  Google Scholar 

  • Ma PF, Zhang YX, Zeng CX, Guo ZH, Li DZ (2014) Chloroplast phylogenomic analyses resolve deep-level relationships of an intractable bamboo tribe Arundinarieae (Poaceae). Syst Biol 63:933–950

    PubMed  Google Scholar 

  • Pereira L, Meireles F, Abreu HT, Ribeiro-Claro PJA (2015) A comparative analysis of carrageenans produced by underutilized versus industrially utilized macroalgae (Gigartinales, Rhodophyta). In: Kim S-K, Chojnacka K (eds) Marine Algae Extracts. Weinheim, Wiley-VCH, pp 277–294

    Google Scholar 

  • Rambaut A (2009) FigTree v1.3.1. 2006-2009. Accessed on November 29, 2012, Program package available at http://tree.bio.ed.ac

  • Raubeson LA, Jansen RK (1992) Chloroplast DNA evidence on the ancient evolutionary split in vascular land plants. Science 255:1697–1699

    CAS  PubMed  Google Scholar 

  • Reyes-Prieto A, Weber AP, Bhattacharya D (2007) The origin and establishment of the plastid in algae and plants. Annu Rev Genet 41:147–168

    CAS  PubMed  Google Scholar 

  • Roper JM, Kellon Hansen S, Wolf PG, Karol KG, Mandoli DF, Everett KDE, Kuehl J, Boore JL (2007) The complete plastid genome sequence of Angiopteris evecta (G. Forst.) Hoffm. (Marattiaceae). Am Fern J 97:95–106

    Google Scholar 

  • Schattner P, Brooks AN, Lowe TM (2005) The tRNAscan-SE, snoscan and snoGPS web servers for the detection of tRNAs and snoRNAs. Nucleic Acids Res 33:686–689

    Google Scholar 

  • Sissinia MN, Navarrete-Fernandez TM, EMC M, Freese JM, Gentilhomme AS, Huber SR, Mumford TF, Hughey JR (2016) Mitochondrial and plastid genome analysis of the heteromorphic red alga Mastocarpus papillatus (C. Agardh) Kützing (Phyllophoraceae, Rhodophyta) reveals two characteristic florideophyte organellar genomes. Mitochondrial DNA B 1:676–677

    Google Scholar 

  • Stamatakis A (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22(21):2688–2690

  • Sun XY, Luo D, Zhao C, Li W, Liu T (2011) DNA extraction and PCR analysis of five kinds of large seaweed under different preservation conditions. Mol Plant Breed 9:1680–1691 (in Chinese with English abstract)

    Google Scholar 

  • Sun Y, Liu C, Chi S, Tang XM, Chen FX, Liu T (2014) Molecular systematic of four Solieriaceae algae based on ITS and rbcL sequence. Preiodical Ocean Univ China 44:54–60 (in Chinese with English abstract)

    CAS  Google Scholar 

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tan J, Lim PE, Phang SM (2013) Phylogenetic relationship of Kappaphycus Doty and Eucheuma J. Agardh (Solieriaceae, Rhodophyta) in Malaysia. J Appl Phycol 25:13–29

    Google Scholar 

  • Wang L, Mao YX, Kong FN, Li GY, Ma F, Zhang BL, Sun P, Bi G, Zhang F, Xue H, Cao M (2013a) Complete sequence and analysis of plastid genomes of two economically important red algae: Pyropia haitanensis and Pyropia yezoensis. PLoS One 8:e65902

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang XL, Shao ZR, Fu WD, Yao JT, Hu QP, Duan DL (2013b) Chloroplast genome of one brown seaweed, Saccharina japonica (Laminariales, Phaeophyta): its structural features and phylogenetic analyses with other photosynthetic plastids. Mar Genomics 10:1–9

    PubMed  Google Scholar 

  • Xu KP, Tang XH, Bi GQ, Cao M, Wang L, Mao XY (2018) The first complete organellar genomes of an Antarctic red alga, Pyropia endiviifolia: insights into its genome architecture and phylogenetic position within genus Pyropia (Bangiales, Rhodophyta). J Oceanol Limnol 36:1315–1328

    CAS  Google Scholar 

  • Yang EC, Kim KM, Kim SY, Lee J, Boo GH, Lee JH, Nelson WA, Yi G, Schmidt WE, Fredericq S, Boo SM, Bhattacharya D, Yoon HS et al (2015) Highly conserved mitochondrial genomes among multicellular red algae of the Florideophyceae. Genome Biol Evol 7:2394–2406

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang T, Shi X, He JH, Chen QF, Feng ZH, He PM (2011) Preliminary analysis on identification Eucheuma and Kappaphycus (Rhodophyta) by ISSR. Acta Oceanol Sin 33:173–178 (in Chinese with English abstract)

    CAS  Google Scholar 

  • Zhang J, Wang XM, Liu C, Jin YM, Liu T (2013) The complete mitochondrial genomes of two brown algae (Laminariales, Phaeophyceae) and phylogenetic analysis within Laminaria. J Appl Phycol 25:1247–1253

    CAS  Google Scholar 

  • Zhang L, Wang XM, Liu T, Wang GL, Chi S, Liu C, Wang H (2015) Complete plastid genome sequence of the brown alga Undaria pinnatifida. PLoS One 10:e0139366

    PubMed  PubMed Central  Google Scholar 

  • Zhang J, Tang XM, Chen WZ, Liu T, Li Y (2018) The complete plastid genome of Grateloupia filicina (Rhodophyta) and phylogenetic analysis. Mitochondrial DNA B 3:1172–1173

    Google Scholar 

  • Zhou X, Xu S, Xu J, Chen B, Zhou K, Yang G (2012) Phylogenomic analysis resolves the interordinal relationships and rapid diversification of the laurasiatherian mammals. Syst Biol 61:150–164

    PubMed  Google Scholar 

Download references

Funding

This work was supported by the China-ASEAN Maritime Cooperation Fund; Public Science and Technology Research Funds Projects of Ocean (Grant No. 201405020); the Natural Science Foundation of Shandong Province (Grant No. ZR2019MC049).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Liu.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Liu, N., Meinita, M.D.N. et al. The complete plastid genomes of Betaphycus gelatinus, Eucheuma denticulatum, and Kappaphycus striatus (Solieriaceae: Rhodophyta) and their phylogenetic analysis. J Appl Phycol 32, 3521–3532 (2020). https://doi.org/10.1007/s10811-020-02120-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-020-02120-5

Keywords

Navigation