Skip to main content
Log in

Measurement of Ethylene Concentrations at High Pressure Based on Tunable Diode Laser Absorption Spectroscopy near 1620 nm

  • Published:
Journal of Applied Spectroscopy Aims and scope

A system for detection of ethylene (C2H4) at high pressure is developed based on tunable diode laser absorption spectroscopy using a distributed feedback laser near 1620 nm. To eliminate the influence of spectral line overlap under high pressure, a differential absorption (peak-minus-valley) scheme is adopted. The peak and valley wavelengths used for the measurement correspond to 6174.64 and 6174.45 cm–1, respectively. Absorption cross sections of ethylene are measured for the selected peak and valley wavelengths. The measured concentration agrees with the known concentration, and the maximum of the standard deviation is 0.746% for all measurements. In addition, long-term continuous measurements indicated good stability of the system. The sensitivity of the system is ~18 ppm with an optimum averaging time of 110 s. All the experimental results validate the applicability of the system in ethylene trace detection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ilias K. Nikolaidis, Luis F. M. Franco, Luc N. Vechot, and Ioannis G. Economou, Fluid Phase Equilibr., 470, 149–163 (2018).

    Article  Google Scholar 

  2. Bo Gan, Be Li, Haipeng Jiang, Dawei Zhang, Mingshu Bi, and Wei Gao, J. Loss Prevent. Proc. Ind., 54, 93–102 (2018).

    Article  Google Scholar 

  3. P. Platz and W. Demtr Öder, Chem. Phys. Lett., 294, Nos. 4–5, 397–405 (1998).

    Article  ADS  Google Scholar 

  4. Hai Pham-Tuan, Joeri Vercammen, Christophe Devos, and Pat Sandra, J. Chromatogr. A, 868 (2000).

  5. L. A. Sgro, P. Minutolo, G. Basile, and A. D’Alessio, Chemosphere, 42, 671–680 (2001).

    Article  ADS  Google Scholar 

  6. Jingsong Li, Benli Yu, Weixiong Zhao, and Weidong Chen, Appl. Spectrosc. Rev., 49, No. 8, 666–691 (2014).

    Article  ADS  Google Scholar 

  7. Andreas Hangauer, Armin Spitznas, Jia Chen, Rainer Strzoda, Hans Link, and Maximilian Fleischer, Proc. Chem., 1, No. 1, 955–958 (2009).

    Article  Google Scholar 

  8. Chunguang Li, Lei Dong, Chuantao Zheng, and Frank K. Tittel, Sens. Actuat. B: Chem., 232, 188–194 (2016).

    Article  Google Scholar 

  9. R. Ghorbani and F. M. Schmidt, Opt. Express, 25, No. 11, 12743–12752 (2017).

    Article  ADS  Google Scholar 

  10. Chuantao Zheng, Weilin Ye, Nancy P. Sanchez, Chunguang Li, Lei Dong, Yiding Wang, Robert J. Griffin, and Frank K. Tittel, Sens. Actuat. B: Chem., 244, 365–372 (2017).

    Article  Google Scholar 

  11. A. Lucchesini and S. Gozzini, J. Quant. Spectrosc. Radiat. Transf., 112, No. 9, 1438–1442 (2011).

    Article  ADS  Google Scholar 

  12. Wei Dong Pan, Jia Wei Zhang, Jing Min Dai, and Yu Feng Zhang, J. Infrared Millimeter Waves, 32, No. 6, 486–790 (2013).

    Article  Google Scholar 

  13. Yubin Wei, Jun Chang, Jie Lian, and Tongyu Liu, Photon. Sens., 5, No. 1, 67–71 (2015).

    Article  ADS  Google Scholar 

  14. Kotaro Tanaka, Kazushi Akishima, Masahiro Sekita, Kenichi Tonokura, and Mitsuru Konno, Appl. Phys. B, 123, No. 8 (2017).

  15. Ch. Ying, G. Guangzhen, and C. Tingdong, Chin. J. Lasers, 44, No. 5 (2017).

  16. L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J.-M. Flaud, R. R. Gamache, J. J. Harrison, J.-M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, Vl. G. Tyuterev, and G. Wagner, J. Quant. Spectrosc. Radiat. Transf., 130, 4–50 (2013).

    Article  ADS  Google Scholar 

  17. S. H. Pyun, J. Cho, D. F. Davidson, and R. K. Hanson, Meas. Sci. Technol., 22, No. 2, 025303 (2011).

    Article  ADS  Google Scholar 

  18. T. J. A. Butler, J. L. Miller, and A. J. Orr-Ewing, J. Chem. Phys., 126, No. 17 (2007).

  19. D. W. Allan and J. A. Barnes, 35th Frequency Control Symp., 36, No. 5, 470–475 (1981).

    Google Scholar 

  20. D. W. Allan, Proc. IEEE, 54, No. 2, 221–230 (1966).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Cai.

Additional information

Published in Zhurnal Prikladnoi Spektroskopii, Vol. 87, No. 4, pp. 617–622, July–August, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, T., Zhang, G., Liu, X. et al. Measurement of Ethylene Concentrations at High Pressure Based on Tunable Diode Laser Absorption Spectroscopy near 1620 nm. J Appl Spectrosc 87, 674–679 (2020). https://doi.org/10.1007/s10812-020-01053-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-020-01053-8

Keywords

Navigation