Skip to main content
Log in

Evaluation of the Calibration-Free and Multivariate Method for Quantitative Analysis in Laser-Induced Breakdown Spectroscopy

  • Published:
Journal of Applied Spectroscopy Aims and scope

The calibration-free laser-induced breakdown spectroscopy (CF–LIBS) method is used to obtain the concentration of the constituents of samples because it overcomes the limitation of matrix-matched standards in the calibration curve method of quantification. However, there are often doubts that remain about the efficiency of the CF–LIBS method. Hence, in the present work, different certified reference materials (CRMs) of plants and soil were employed to check the capabilities of the CF–LIBS method. If the emission lines of an element are missing in the LIBS spectra, its contribution in the CF–LIBS result will be missing as well, which leads to incorrect quantification. Therefore, in order to overcome this problem in CF–LIBS, instead of only determining the elemental concentrations, an additional step to calculate the concentration ratio of all elements with respect to the concentration of a major element was added. The calculated concentration ratios for different elements are more accurate than the elemental concentration obtained by CF–LIBS. Along with the CF–LIBS method, the partial least square regression (PLSR) approach was also applied for the prediction of the concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Kumar Pathak, R. Kumar, V. Kumar Singh, R. Agrawal, Sh. Rai, and A. Kumar Rai, Appl. Spectrosc. Rev., 47, No. 1, 14–40 (2012).

    Article  ADS  Google Scholar 

  2. V. Kumar Singh and A. Kumar Rai, Laser. Med. Sci., 26, No. 5, 673–687 (2011).

    Article  Google Scholar 

  3. D. A. Rusak, B. C. Castle, B. W. Smith, and J. D. Winefordner, Trends Anal. Chem., 17, No. 8-9, 453–461 (1998).

    Article  Google Scholar 

  4. D. A. Cremers and R. C. Chinni, Appl. Spectrosc. Rev., 44, No. 6, 457–506 (2009).

    Article  ADS  Google Scholar 

  5. F.-Y. Yueh, R. C. Sharma, J. P. Singh, and H. Zhang, J. Air Waste Manage. Assoc., 52, 1307–1315 (2002).

    Article  Google Scholar 

  6. D. W. Hahn and N. Omenetto, Appl. Spectrosc., 66, No. 4, 347–419 (2012).

    Article  ADS  Google Scholar 

  7. J. Karhunen, A. Hakola, J. Likonen, A. Lissovski, P. Paris, M. Laan, K. Piip, C. Orosnicu, C. P. Lungu, and K. Sugiyama, Phys. Scr., 159, 014067 (2014).

    Article  Google Scholar 

  8. C. Latkoczy and T. Ghislain, J. At. Anal. Spectrom., 21, 1152–1160 (2006).

    Google Scholar 

  9. B. G. Oztoprak, J. Gonzalez, J. Yoo, T. Gulecen, N. Mutlu, R. E. Russo, O. Gundogdu, and A. Demire, Appl. Spectrosc., 66, No. 11, 1353–1361 (2012).

    Article  ADS  Google Scholar 

  10. N. S. Rajurkar and M. M. Damame, J. Radioanal. Nucl. Chem., 219, 77–80 (1997).

    Article  Google Scholar 

  11. C. G. Ryan, Int. J. Imag. Syst. Technol., 11, 219–230 (2000).

    Article  Google Scholar 

  12. J. Wang, T. Nakazato, K. Sakanishi, O. Yamada, H. Tao, and I. Saito, Anal. Chim. Acta, 514, 115–124 (2004).

    Article  Google Scholar 

  13. N. Civici, Sh. Gjongecaj, F. Stamati, T. Dilo, E. Pavlidou, E. K. Polychroniadis, and Z. Smit, Nucl. Instrum. Methods. Phys. Res. B, 258, 414–420 (2007).

    Article  ADS  Google Scholar 

  14. A. Ciucci, M. Corsi, V. Palleschi, V. Rastelli, A. Salvetti, and E. Tognoni, Appl. Spectrosc., 53, No. 8, 960–964 (1999).

    Article  ADS  Google Scholar 

  15. M. Corsi, G. Cristoforetti, M. Hidalgo, S. Legnaioli, V. Palleschi, A. Salvetti, E. Tognoni, and C. Vallebona, Appl. Opt., 42, No. 30, 6133–6137 (2003).

    Article  ADS  Google Scholar 

  16. R. Gaudiuso, M. Dell'Aglio, O. de Pascale, and G. S. Senesi, Sensors, 10, 7434–7468 (2010).

    Article  ADS  Google Scholar 

  17. J. A. Aguilera, C. Aragón, G. Cristoforetti, and E. Tognoni, Spectrochim. Acta B, 64, 685–689 (2009).

    Article  ADS  Google Scholar 

  18. R. Kumar and A. K. Rai, Environ. Monit. Assess., 185, 171–180 (2013).

    Article  Google Scholar 

  19. Sh. Awasthi, R. Kumar, A. Devanathan, R. Acharya, and A. K. Rai, Anal. Chem. Res., 12, 10–16 (2017).

    Article  Google Scholar 

  20. R. Aruga, D. Gastaldi, G. Negro, and G. Ostacoli, Anal. Chim. Acta, 310, 15–25 (1995).

    Article  Google Scholar 

  21. J. L. Gottfried, R. S. Harmon Jr., F. C. De Lucia, and A. W. Miziolek, Spectrochim. Acta B, 64, 1009–1019 (2009).

    Article  ADS  Google Scholar 

  22. M. Farrokhniaa and S. Karimib, Anal. Chim. Acta, 902, 70–81 (2016).

    Article  Google Scholar 

  23. A. Sarkar, V. Karki, S. K. Aggarwal, G. S. Maurya, R. Kumar, A. K. Rai, X. Mao, and R. E. Russo, Spectrochim. Acta B, 108, 8–14 (2015).

    Article  ADS  Google Scholar 

  24. https://physics.nist.gov/PhysRefData/ASD/lines_form.html.

  25. J. P. Singh and S. N. Thakur, Laser Induced Breakdown Spectroscopy, Elsevier, Amsterdam (2007).

    Google Scholar 

  26. A. H. Galmed and M. A. Harith, Appl. Phys. B, 91, 651–660 (2008).

    Article  ADS  Google Scholar 

  27. G. S. Maurya, A. Jyotsana, R. Kumar, A. Kumar, and A. K. Rai, Phys. Scr., 89, 075601 (2014).

    Article  ADS  Google Scholar 

  28. G. S. Maurya, P. K. Tiwari, R. Kumar, R. K. Singh, and A. K. Rai, In: Laser Induced Breakdown Spectroscopy, Eds. J. P. Singh and S. N. Thakur, Elsevier (2020), pp. 385–399.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. K. Rai.

Additional information

Published in Zhurnal Prikladnoi Spektroskopii, Vol. 88, No. 3, pp. 462–470, May–June, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, R., Maurya, G.S., Devanathan, A. et al. Evaluation of the Calibration-Free and Multivariate Method for Quantitative Analysis in Laser-Induced Breakdown Spectroscopy. J Appl Spectrosc 88, 580–588 (2021). https://doi.org/10.1007/s10812-021-01212-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-021-01212-5

Keywords

Navigation