Skip to main content
Log in

High post-thaw survival of ram sperm after partial freeze-drying

  • Technological Innovations
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

Abstract

Background

Recrystallization damages occur when a frozen sample is held at high subzero temperatures and when the warming process is too slow.

Methods

In this work, ram semen diluted in two different concentrations of sugar solutions (Lyo A consisted of 0.4 M sorbitol and 0.25 M trehalose, and the second, Lyo B composed of 0.26 M sorbitol and 0.165 M trehalose) in egg yolk and Tris medium were compared after freezing 10 μL samples to: (1) − 10, − 25, and − 35 °C and thawing. (2) Freezing to − 10 and − 25 °C, holding for 1 h and then thawing, and (3) freezing to − 10 and − 25 °C and drying for 1 h at these temperatures at a vacuum of 80 mTorr, prior thawing. For drying, we used a new freeze-drying apparatus (Darya, FertileSafe, Israel) having a condensation temperature below − 110 °C and a vacuum pressure of 10–100 mTorr that is reached in less than 10s.

Results

Results showed that samples in Lyo B solution frozen at − 25 °C had significantly higher sperm motility in partially freeze-dried samples than frozen samples (46.6 ± 2.8% vs 1.2 ± 2.5%, P < 0.001). Moreover, partially dried samples in Lyo B showed higher motility than Lyo A at − 25 °C (46.6 ± 2.8% vs 35 ± 4%). Cryomicroscopy and low-temperature/low-pressure environmental scanning electronic microscope demonstrated that the amount of the ice crystals present in partially dried samples was lower than in the frozen samples.

Conclusion

Holding the sperm at high subzero temperatures is necessary for the primary drying of cells during the freeze-drying process. Rapid freeze-drying can be achieved using this new device, which enables to reduce recrystallization damages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Arav A, Saragusty J. Directional freezing of sperm and associated derived technologies. Anim Reprod Sci. 2016;169:6–13.

    Article  PubMed  Google Scholar 

  2. Bielanski A. A review of the risk of contamination of semen and embryos during cryopreservation and measures to limit cross-contamination during banking to prevent disease transmission in ET practices. Theriogenology. 2012;77(3):467–82.

    Article  PubMed  CAS  Google Scholar 

  3. Crowe JH, Crowe LM, Wolkers WF, Oliver AE, Ma X, Auh J-H, et al. Stabilization of dry mammalian cells: lessons from nature. Integr Comp Biol. 2005;45(5):810–20.

    Article  PubMed  CAS  Google Scholar 

  4. Gil L, Olaciregui M, Luño V, Malo C, González N, Martínez F. Current status of freeze-drying technology to preserve domestic animals sperm. Reprod Domest Anim. 2014;49(Suppl 4):72–81.

    Article  PubMed  CAS  Google Scholar 

  5. Polge C, Smith AU, Parkes AS. Revival of spermatozoa after vitrification and dehydration at low temperatures. Nature. 1949;164(4172):666.

    Article  PubMed  CAS  Google Scholar 

  6. Sherman JK. Freezing and freeze-drying of human spermatozoa. Fertil Steril. 1954;5(4):357–71.

    Article  PubMed  CAS  Google Scholar 

  7. Sherman JK. Freezing and freeze-drying of bull spermatozoa. Am J Phys. 1957;190(2):281–6.

    CAS  Google Scholar 

  8. Bialy G, Smith VR. Freeze-drying of bovine spermatozoa. J Dairy Sci. 1957;40(7):739–45.

    Article  Google Scholar 

  9. Meryman HT, Kafig E. Survival of spermatozoa following drying. Nature. 1959;184(4684):470–1.

    Article  Google Scholar 

  10. Saacke RG, Almquist JO. Freeze-drying of bovine spermatozoa. Nature. 1961;192(4806):995–6.

    Article  PubMed  CAS  Google Scholar 

  11. Sherman JK. Improved methods of preservation of human spermatozoa by freezing and freeze-drying. Fertil Steril. 1963;14(1):49–64.

    Article  PubMed  CAS  Google Scholar 

  12. Moisan AE, Leibo SP, Lynn JW, Gómez MC, Pope CE, Dresser BL, et al. Embryonic development of felid oocytes injected with freeze-dried or air-dried spermatozoa. Cryobiology. 2005;51:373. (abstract)

    Google Scholar 

  13. Watanabe H, Asano T, Abe Y, Fukui Y, Suzuki H. Pronuclear formation of freeze-dried canine spermatozoa microinjected into mouse oocytes. J Assist Reprod Genet. 2009;26(9–10):531–6.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Martins CF, Bao SN, Dode MN, Correa GA, Rumpf R. Effects of freeze-drying on cytology, ultrastructure, DNA fragmentation, and fertilizing ability of bovine sperm. Theriogenology. 2007;67(8):1307–15.

    Article  PubMed  CAS  Google Scholar 

  15. Kusakabe H, Yanagimachi R, Kamiguchi Y. Mouse and human spermatozoa can be freeze-dried without damaging their chromosomes. Hum Reprod. 2008;23(2):233–9.

    Article  PubMed  CAS  Google Scholar 

  16. Hara H, Abdalla H, Morita H, Kuwayama M, Hirabayashi M, Hochi S. Procedure for bovine ICSI, not sperm freeze-drying, impairs the function of the microtubule-organizing center. J Reprod Dev. 2011;57(3):428–32.

    Article  PubMed  CAS  Google Scholar 

  17. Gianaroli L, Magli MC, Stanghellini I, Crippa A, Crivello AM, Pescatori ES, et al. DNA integrity is maintained after freeze-drying of human spermatozoa. Fertil Steril. 2012;97(5):1067–73.

    Article  PubMed  CAS  Google Scholar 

  18. Garcia A, Gil L, Malo C, Martinez F, Kershaw-Young C, de Blas I. Effect of different disaccharides on the integrity and fertilising ability of freeze-dried boar spermatozoa: a preliminary study. Cryo Letters. 2014;35(4):277–85.

    PubMed  CAS  Google Scholar 

  19. Olaciregui M, Luño V, Gonzalez N, De Blas I, Gil L. Freeze-dried dog sperm: dynamics of DNA integrity. Cryobiology. 2015;71(2):286–90.

    Article  PubMed  CAS  Google Scholar 

  20. Magalhães MJ Jr, Martins LF, Senra RL, Santos TF, Okano DS, Pereira PR, et al. Differential abundances of four forms of binder of sperm in the seminal plasma of Bos taurus indicus bulls with different patterns of semen freezability. Theriogenology. 2016;86(3):766–77.

    Article  PubMed  CAS  Google Scholar 

  21. Wakayama T, Yanagimachi R. Development of normal mice from oocytes injected with freeze-dried spermatozoa. Nat Biotechnol. 1998;16(7):639–41.

    Article  PubMed  CAS  Google Scholar 

  22. Liu JL, Kusakabe H, Chang CC, Suzuki H, Schmidt DW, Julian M, et al. Freeze-dried sperm fertilization leads to full-term development in rabbits. Biol Reprod. 2004;70(6):1776–81.

    Article  PubMed  CAS  Google Scholar 

  23. Hirabayashi M, Kato M, Ito J, Hochi S. Viable rat offspring derived from oocytes intracytoplasmically injected with freeze-dried sperm heads. Zygote. 2005;13(1):79–85.

    Article  PubMed  Google Scholar 

  24. Hochi S, Watanabe K, Kato M, Hirabayashi M. Live rats resulting from injection of oocytes with spermatozoa freeze-dried and stored for one year. Mol Reprod Dev. 2008;75(5):890–4.

    Article  PubMed  CAS  Google Scholar 

  25. Arav A, Natan D. Freeze drying (lyophilization) of red blood cells. J Trauma Acute Care Surg. 2011;70(5):S61–4.

    Article  Google Scholar 

  26. Goodrich RP, Sowemimo-Coker SO, Zerez CR, Tanaka KR. Preservation of metabolic activity in lyophilized human erythrocytes. Proc Nat Acad Sci USA. 1992;89(3):967–71.

    Article  PubMed  CAS  Google Scholar 

  27. Natan D, Nagler A, Arav A. Freeze-drying of mononuclear cells derived from umbilical cord blood followed by colony formation. PLoS One. 2009;4(4):e5240.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Das ZC, Gupta MK, Uhm SJ, Lee HT. Lyophilized somatic cells direct embryonic development after whole cell intracytoplasmic injection into pig oocytes. Cryobiology. 2010;61(2):220–4.

    Article  PubMed  Google Scholar 

  29. Zhang M, Oldenhof H, Sydykov B, Bigalk J, Sieme H, Wolkers WF. Freeze-drying of mammalian cells using trehalose: preservation of DNA integrity. Sci Rep. 2017;7(1):6198.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Loi P, Matsukawa K, Ptak G, Clinton M, Fulka J Jr, Natan Y, et al. Freeze-dried somatic cells direct embryonic development after nuclear transfer. PLoS One. 2008;3(8):e2978.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Li S, Chakraborty N, Borcar A, Menze MA, Toner M, Hand SC. Late embryogenesis abundant proteins protect human hepatoma cells during acute desiccation. Proc Nat Acad Sci USA. 2012;109(51):20859–64.

    Article  PubMed  Google Scholar 

  32. Arav A, Gavish Z, Elami A, Silber S, Patrizio P. Ovarian survival 6 years after whole organ cryopreservation and transplantation. Fertil Steril. 2007;88(Supplement 1):S352. (abstract)

    Article  Google Scholar 

  33. Arav A. Large tissue freezing. J Assist Reprod Genet. 2003;20(9):351.

    Article  PubMed  Google Scholar 

  34. Mazur P, Cole KW. Roles of unfrozen fraction, salt concentration, and changes in cell volume in the survival of frozen human erythrocytes. Cryobiology. 1989;26(1):1–29.

    Article  PubMed  CAS  Google Scholar 

  35. Wolkers WF, Tablin F, Crowe JH. From anhydrobiosis to freeze-drying of eukaryotic cells. Comp Biochem Physiol A Mol Integr Physiol. 2002;131(3):535–43.

    Article  PubMed  Google Scholar 

  36. Guo N, Puhlev I, Brown DR, Mansbridge J, Levine F. Trehalose expression confers desiccation tolerance on human cells. Nat Biotechnol. 2000;18(2):168–71.

    Article  PubMed  CAS  Google Scholar 

  37. Sitaula R, Fowler A, Toner M, Bhowmick S. A study of the effect of sorbitol on osmotic tolerance during partial desiccation of bovine sperm. Cryobiology. 2010;60(3):331–6.

    Article  PubMed  CAS  Google Scholar 

  38. Curry MR, Watson PF. Osmotic effects on ram and human sperm membranes in relation to thawing injury. Cryobiology. 1994;31(1):39–46.

    Article  PubMed  CAS  Google Scholar 

  39. Rindler V, Lüneberger S, Schwindke P, Heschel I, Rau G. Freeze-drying of red blood cells at ultra-low temperatures. Cryobiology. 1999 Feb;38(1):2–15.

    Article  PubMed  CAS  Google Scholar 

  40. Hara H, Tagiri M, Hirabayashi M, Hochi S. Effect of cake collapse on the integrity of freeze-dried bull spermatozoa. Reprod Fertil Dev. 2013;26(1):144. (Abstract)

    Article  Google Scholar 

  41. Watson PF, Duncan AE. Effect of salt concentration and unfrozen water fraction on the viability of slowly frozen ram spermatozoa. Cryobiology. 1988;25(2):131–42.

    Article  PubMed  CAS  Google Scholar 

  42. Saragusty J, Gacitua H, Rozenboim I, Arav A. Do physical forces contribute to cryodamage? Biotechnol Bioeng. 2009;104(4):719–28.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr. Monica Strina for the proofreading and editing of the manuscript. This work was supported by Progetto RAS MIGLIOVIGENSAR 2016/2018 and by Programma visiting professor RAS 2016. This work was also supported by FertileSafe Ltd.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amir Arav.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arav, A., Idda, A., Nieddu, S.M. et al. High post-thaw survival of ram sperm after partial freeze-drying. J Assist Reprod Genet 35, 1149–1155 (2018). https://doi.org/10.1007/s10815-018-1145-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10815-018-1145-1

Keywords

Navigation