Skip to main content
Log in

Altered circadian clock gene expression in the sperm of infertile men with asthenozoospermia

  • Gamete Biology
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

Abstract

Purpose

Male infertility is a complex multifactorial pathological condition, and asthenozoospermia (AZS) is one of the most common causes. Current evidence suggests the underlying role of the circadian clock on male fertility. This study aims to evaluate the expression levels of five principal clock genes in the sperm and their correlations with the sperm parameters in male infertility.

Methods

We determined the expression profiles of BMAL1, CLOCK, CRY1, PER1, and PER2 in the sperm of infertile men with AZS (n=38) and healthy fertile men (n=40) using quantitative real-time PCR. Then we performed comprehensive association analyses on the clock gene levels and the sperm parameters, including progressive and total motility, concentration, and normal morphology of the sperm.

Results

Our results showed that the expression levels of five clock genes (BMAL1, CLOCK, CRY1, PER1, and PER2) are significantly decreased in the sperm of the infertile men with AZS as compared with that of healthy fertile men (P< 0.01). All five clock gene levels are associated with the percentage of progressive/total sperm motility (r= 0.546/0.589~0.677/0.695, P< 0.01). We also discovered that a combination of BMAL1, CLOCK, CRY1, PER1, and PER2 could reach a high diagnostic performance (areas under the curves, 92%) for infertility with AZS.

Conclusions

This study first reports that sperm BMAL1, CLOCK, CRY1, PER1, and PER2 levels are altered in AZS and may be molecular markers for male infertility with AZS. These findings indicate the possibility of stabilizing circadian rhythmicity through therapeutic intervention on clock genes to prevent and treat infertility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Petok WD. Infertility counseling (or the lack thereof) of the forgotten male partner. Fertil Steril. 2015;104(2):260–6.

    Article  Google Scholar 

  2. Coutton C, Fissore RA, Palermo GD, Stouffs K, Touré A. Male infertility: genetics, mechanism, and therapies. Biomed Res Int. 2016;2016:7372362.

    Article  Google Scholar 

  3. Shahrokhi SZ, Salehi P, Alyasin A, Taghiyar S, Deemeh MR. Asthenozoospermia: cellular and molecular contributing factors and treatment strategies. Andrologia. 2020;52(2):e13463. https://doi.org/10.1111/and.13463.

    Article  PubMed  Google Scholar 

  4. Rybar R, Kopecka V, Prinosilova P, Markova P, Rubes J. Male obesity and age in relationship to semen parameters and sperm chromatin integrity. Andrologia. 2011;43(4):286–91.

    Article  CAS  Google Scholar 

  5. Salas-Huetos A, Bullo M, Salas-Salvado J. Dietary patterns, foods and nutrients in male fertility parameters and fecundability: a systematic review of observational studies. Hum Reprod Update. 2017;23(4):371–89.

    Article  Google Scholar 

  6. Hosseinpour E, Shahverdi A, Parivar K, et al. Sperm ubiquitination and DNA fragmentation in men with occupational exposure and varicocele. Andrologia. 2014;46(4):423–9.

    Article  CAS  Google Scholar 

  7. Zhang B, Ma H, Khan T, et al. A DNAH17 missense variant causes flagella destabilization and asthenozoospermia. J Exp Med. 2020;217(2):e20182365. https://doi.org/10.1084/jem.20182365.

    Article  CAS  PubMed  Google Scholar 

  8. Ghandehari-Alavijeh R, Zohrabi D, Tavalaee M, Nasr-Esfahani MH. Association between expression of TNF-alpha, P53 and HIF1alpha with asthenozoospermia. Hum Fertil (Camb). 2019;22(2):145–51.

    Article  CAS  Google Scholar 

  9. Peterlin A, Kunej T, Peterlin B. The role of circadian rhythm in male reproduction. Curr Opin Endocrinol Diabetes Obes. 2019;26(6):313–6.

    Article  Google Scholar 

  10. Roenneberg T, Merrow M. The circadian clock and human health. Curr Biol. 2016;26(10):R432–43.

    Article  CAS  Google Scholar 

  11. Pan X, Taylor MJ, Cohen E, Hanna N, Mota S. Circadian clock, time-restricted feeding and reproduction. Int J Mol Sci. 2020;21(3):831. https://doi.org/10.3390/ijms21030831.

    Article  CAS  PubMed Central  Google Scholar 

  12. Cypryjański J. Changes in seasonality of births in Poland in the years 1900–2009. Demog Res. 2019;40:1441–54.

    Article  Google Scholar 

  13. Saint Pol P, Beuscart R, Leroy-Martin B, Hermand E, Jablonski W. Circannual rhythms of sperm parameters of fertile men. Fertil Steril. 1989;51(6):1030–3.

    Article  CAS  Google Scholar 

  14. Xie M, Utzinger KS, Blickenstorfer K, Leeners B. Diurnal and seasonal changes in semen quality of men in subfertile partnerships. Chronobiol Int. 2018;35(10):1375–84.

    Article  Google Scholar 

  15. Ni W, Liu K, Hou G, et al. Diurnal variation in sperm DNA fragmentation: analysis of 11,382 semen samples from two populations and in vivo animal experiments. Chronobiol Int. 2019;36(11):1455–63.

    Article  CAS  Google Scholar 

  16. Rijo-Ferreira F, Takahashi JS. Genomics of circadian rhythms in health and disease. Genome Med. 2019;11(1):1–16. https://doi.org/10.1186/s13073-019-0704-0.

    Article  Google Scholar 

  17. Takahashi JS. Transcriptional architecture of the mammalian circadian clock. Nat Rev Genet. 2017;18(3):164–79. https://doi.org/10.1038/nrg.2016.150.

    Article  CAS  PubMed  Google Scholar 

  18. Hergenhan S, Holtkamp S, Scheiermann C. Molecular interactions between components of the circadian clock and the immune system. J Mol Biol. 2020;432(12):3700–13. https://doi.org/10.1016/j.jmb.2019.12.044.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Sen A, Hoffmann HM. Role of core circadian clock genes in hormone release and target tissue sensitivity in the reproductive axis. Mol Cell Endocrinol. 2020;501:110655. https://doi.org/10.1016/j.mce.2019.110655.

    Article  CAS  PubMed  Google Scholar 

  20. Schoeller EL, Clark DD, Dey S, et al. Bmal1 is required for normal reproductive behaviors in male mice. Endocrinol. 2016;157(12):4914–29.

    Article  CAS  Google Scholar 

  21. Li C, Xiao S, Hao J, Liao X, Li G. Cry1 deficiency leads to testicular dysfunction and altered expression of genes involved in cell communication, chromatin reorganization, spermatogenesis, and immune response in mouse testis. Mol Reprod Dev. 2018;85(4):325–35. https://doi.org/10.1002/mrd.22968.

    Article  CAS  PubMed  Google Scholar 

  22. Organization WHO. WHO laboratory manual for the examination and processing of human semen. Geneva, Switzerland: World Health Organization Press; 2010. p. 226.

    Google Scholar 

  23. Lunenfeld B, Mskhalaya G, Zitzmann M, et al. Recommendations on the diagnosis, treatment and monitoring of testosterone deficiency in men. Aging Male. 2021;24(1):119–38.

    Article  Google Scholar 

  24. Cox KH, Takahashi JS. Circadian clock genes and the transcriptional architecture of the clock mechanism. J Mol Endocrinol. 2019;63(4):R93–102.

    Article  CAS  Google Scholar 

  25. Liu B, Wang P, Wang Z, et al. Analysis and difference of voltage-dependent anion channel mRNA in ejaculated spermatozoa from normozoospermic fertile donors and infertile patients with idiopathic asthenozoospermia. J Assist Reprod Genet. 2010;27(12):719–24.

    Article  Google Scholar 

  26. Lambard S, Galeraud-Denis I, Martin G, Levy R, Chocat A, Carreau S. Analysis and significance of mRNA in human ejaculated sperm from normozoospermic donors: relationship to sperm motility and capacitation. Mol Hum Reprod. 2004;10(7):535–41.

    Article  CAS  Google Scholar 

  27. Sciarra F, Franceschini E, Campolo F, et al. Disruption of circadian rhythms: a crucial factor in the etiology of infertility. Int J Mol Sci. 2020;21(11):3943.

    Article  CAS  Google Scholar 

  28. Morse D, Cermakian N, Brancorsini S, Parvinen M, Sassone-Corsi P. No circadian rhythms in testis: Period1 expression is clock independent and developmentally regulated in the mouse. Mol Endocrinol. 2003;17(1):141–51.

    Article  CAS  Google Scholar 

  29. Shen O, Ding X, Nie J, et al. Variants of the CLOCK gene affect the risk of idiopathic male infertility in the Han-Chinese population. Chronobiol Int. 2015;32(7):959–65. https://doi.org/10.3109/07420528.2015.1056305.

    Article  CAS  PubMed  Google Scholar 

  30. Zhang J, Ding X, Li Y, et al. Association of CLOCK gene variants with semen quality in idiopathic infertile Han-Chinese males. Reprod Biomed Online. 2012;25(5):536–42.

    Article  CAS  Google Scholar 

  31. Li R, Cheng S, Wang Z. Circadian clock gene plays a key role on ovarian cycle and spontaneous abortion. Cell Physiol Biochem. 2015;37(3):911–20.

    Article  CAS  Google Scholar 

  32. Kumar S, Deb R, Singh U, et al. Bovine circadian locomotor output cycles kaput (CLOCK) and clusterin (CLU) mRNA quantitation in ejaculated crossbred bull spermatozoa. Reprod Domest Anim. 2015;50(3):505–9.

    Article  CAS  Google Scholar 

  33. Liu XX, Cai L, Liu FJ. An in silico analysis of human sperm genes associated with asthenozoospermia and its implication in male infertility. Medicine (Baltimore). 2018;97(49):e13338.

    Article  CAS  Google Scholar 

  34. Caballero-Campo P, Lira-Albarrán S, Barrera D, et al. Gene transcription profiling of astheno- and normo-zoospermic sperm subpopulations. Asian J Androl. 2020;22(6):608–15.

    Article  CAS  Google Scholar 

  35. Bansal SK, Gupta N, Sankhwar SN, Rajender S. Differential genes expression between fertile and infertile spermatozoa revealed by transcriptome analysis. PLoS One. 2015;10(5):e0127007.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

PZ and YL designed the project of this manuscript, and PZ and CL carried out all the experiments. PZ and YG contributed to statistical analyses and results interpretation. PZ and YL contributed to the drafting of the manuscript. YL revised the paper. All authors edited and approved the final version of the manuscript.

Corresponding author

Correspondence to Yifu Leng.

Ethics declarations

Ethics approval

This study has been granted ethical approval by the Ethics Committee of The Affiliated Zhongshan Hospital of Dalian University (approval number: 2019326).

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, P., Li, C., Gao, Y. et al. Altered circadian clock gene expression in the sperm of infertile men with asthenozoospermia. J Assist Reprod Genet 39, 165–172 (2022). https://doi.org/10.1007/s10815-021-02375-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10815-021-02375-y

Keywords

Navigation