Skip to main content
Log in

Dissipative transport in superlattices within the Wigner function formalism

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

We employ the Wigner function formalism to simulate partially coherent, dissipative electron transport in biased semiconductor superlattices. We introduce a model collision integral with terms that describe energy dissipation, momentum relaxation, and the decay of spatial coherences (localization). Based on a particle-based solution to the Wigner transport equation with the model collision integral, we simulate quantum electronic transport at 10 K in a GaAs/AlGaAs superlattice and accurately reproduce its current density vs field characteristics obtained in experiment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. This case is to be contrasted with the optical limit, in which a system is assumed only weakly coupled with the environment and energy levels spaced so far apart that the secular or rotating wave approximation (RWA) can be emplyed. While tenuous in current-carrying nanostructures, the weak approximation and RWA are nonetheless often applied to derive master equations in quantum transport [39].

References

  1. Weyl, H.: Quantenmechanik und gruppentheorie. Physik. Z. 46, 1 (1927)

    Article  MATH  Google Scholar 

  2. Wigner, E.: On the quantum correction for thermodynamic equilibrium. Phys. Rev. 40, 749 (1932)

    Article  Google Scholar 

  3. Groenewold, H.: On the principles of elementary quantum mechanics. Physica 12(7), 405 (1946). ISSN 0031-8914

    Article  MathSciNet  MATH  Google Scholar 

  4. Moyal, J.E.: Quantum mechanics as a statistical theory. Math. Proc. Camb. 45, 99 (1949). ISSN 1469-8064

    Article  MathSciNet  MATH  Google Scholar 

  5. Tatarskii, V .I.: The Wigner representation of quantum mechanics. Sov. Phys. Uspekhi 26(4), 311 (1983)

    Article  MathSciNet  Google Scholar 

  6. Hillery, M., et al.: Distribution functions in physics: fundamentals. Phys. Rep. 106(3), 121 (1984). ISSN 0370-1573

    Article  MathSciNet  Google Scholar 

  7. Jacoboni, C., Bordone, P.: The Wigner-function approach to non-equilibrium electron transport. Rep. Prog. Phys 67(7), 1033 (2004)

    Article  Google Scholar 

  8. Leonhardt, U.: Measuring the Quantum State of Light. Cambridge University Press, Cambridge (1997)

    Google Scholar 

  9. Schleich, W.P.: Quantum Optics in Phase Space. Wiley, Weinheim (2002)

    Google Scholar 

  10. Baker, G.A., McCarthy, I.E., Porter, C.E.: Application of the phase space quasi-probability distribution to the nuclear shell model. Phys. Rev. 120, 254 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  11. Shlomo, S., Prakash, M.: Phase space distribution of an n-dimensional harmonic oscillator. Nucl. Phys. A 357(1), 157 (1981). ISSN 0375-9474

    Article  MathSciNet  Google Scholar 

  12. Belitsky, A., Ji, X., Yuan, F.: Quark imaging in the proton via quantum phase-space distributions. Phys. Rev. D 69, 074014 (2004)

    Article  Google Scholar 

  13. Imre, K., et al.: Wigner method in quantum statistical mechanics. J. Math. Phys 8(5), 1097 (1967)

    Article  Google Scholar 

  14. Frensley, W.R.: Transient response of a tunneling device obtainefrom the Wigner function. Phys. Rev. Lett. 57, 2853 (1986)

    Article  Google Scholar 

  15. Kluksdahl, N.C., et al.: Self-consistent study of the resonant-tunneling diode. Phys. Rev. B 39, 7720 (1989)

    Article  Google Scholar 

  16. Jensen, K.L., Buo, F.A.: Numerical simulation of intrinsic bistability and high-frequency current oscillations in resonant tunneling structures. Phys. Rev. Lett. 66, 1078 (1991)

    Article  Google Scholar 

  17. Biegel, B.A., Plummer, J.D.: Comparison of self-consistency iteration options for the Wigner function method of quantum device simulation. Phys. Rev. B 54, 8070 (1996)

    Article  Google Scholar 

  18. Bertoni, A., et al.: The Wigner function for electron transport in mesoscopic systems. J. Phys. Condens. Matter 11, 5999 (1999)

  19. Bordone, P., et al.: Quantum transport of electrons in open nanostructures with the Wigner-function formalism. Phys. Rev. B 59, 3060 (1999)

    Article  Google Scholar 

  20. Buot, F.A., et al.: Emitter quantization and double hysteresis in resonant-tunneling structures: a nonlinear model of charge oscillation and current bistability. Phys. Rev. B 61, 5644 (2000)

    Article  Google Scholar 

  21. Garcia-Garcia, J., Martin, F.: Simulation of multilayered resonant tunneling diodes using coupled Wigner and boltzmann distribution function approaches. Appl. Phys. Lett. 77, 3412 (2000)

    Article  Google Scholar 

  22. Shifren, L., Ferry, D.: Particle Monte Carlo simulation of Wigner function tunneling. Phys. Lett. A 285, 34, 217 (2001). ISSN 0375-9601

    Article  Google Scholar 

  23. Nedjalkov, M., et al.: Unified particle approach to Wigner-boltzmann transport in small semiconductor devices. Phys. Rev. B 70, 115319 (2004)

    Article  Google Scholar 

  24. Querlioz, D., et al.: An improved Wigner monte-carlo technique for the self-consistent simulation of rtds. J. Comput. Electron. 5, 443 (2006)

    Article  Google Scholar 

  25. Dai, Z .H., et al.: Dynamical behavior of electron transport in algaas/gaas double-barrier structures under a high-frequency radiation field. Eur. Phys. J. B 60, 4, 439 (2007). ISSN 1434-6028

  26. Barraud, S.: Dissipative quantum transport in silicon nanowires based on Wigner transport equation. J. Appl. Phys. 110, 9, 093710 (2011)

    Article  Google Scholar 

  27. Wojcik, P., et al.: Intrinsic oscillations of spin current polarization in a paramagnetic resonant tunneling diode. Phys. Rev. B 86, 165318 (2012)

    Article  Google Scholar 

  28. Jonasson, O., Knezevic, I.: Coulomb-driven terahertz-frequency intrinsic current oscillations in a double-barrier tunneling structure. Phys. Rev. B 90, 165415 (2014)

    Article  Google Scholar 

  29. Querlioz, D., et al.: Wigner-boltzmann Monte Carlo approach to nanodevice simulation: from quantum to semiclassical transport. J. Comput. Electron. 8, 324 (2009)

    Article  Google Scholar 

  30. Wacker, A.: Semiconductor superlattices: a model system for nonlinear transport. Phys. Rep. 357(1), 1 (2002). ISSN 0370-1573

    Article  MATH  Google Scholar 

  31. Kumar, S., et al.: A 1.8-Thz quantum cascade laser operating significantly above the temperature of [planck][omega]/kB. Nat. Phys. 7, 166 (2011)

    Article  Google Scholar 

  32. Jacoboni, C., et al.: Quantum transport and its simulation with the Wigner-function approach. Int. J. High Speed Electron. Syst. 11, 387 (2001)

    Article  Google Scholar 

  33. Nedjalkov, M., Kosina, H., Schwaha, P.: Device modeling in the Wigner picture. J. Comput. Electron. 9, 218 (2010)

    Article  Google Scholar 

  34. Kim, K.-Y., Lee, B.: On the high order numerical calculation schemes for the Wigner transport equation. Solid State Electron. 43, 12, 2243 (1999). ISSN 0038-1101

    Google Scholar 

  35. Jonasson, O., Knezevic, I.: On the boundary conditions for the Wigner transport equation (in prep)

  36. Dias, N .C., Prata, J .N.: Admissible states in quantum phase space. Ann. Phys. 313, 1, 110 (2004). ISSN 0003-4916

    Article  MathSciNet  Google Scholar 

  37. Lundstrom, M.: Fundamentals of Carrier Transport, 2nd edn. Cambridge University Press, Cambridge (2000). ISBN 0521631343,9780521631341

    Book  Google Scholar 

  38. Querlioz, D., Dollfus, P.: The Wigner Monte-Carlo Method for Nanoelectronic Devices: A Particle Description of Quantum Transport and Decoherence. Wiley, Hoboken (2013). ISBN 9781118618448

  39. Knezevic, I., Novakovic, B.: Time-dependent transport in open systems based on quantum master equations. J. Comput. Electron. 12, 3, 363 (2013). ISSN 1569-8025

    Article  Google Scholar 

  40. Heinz-Peter Breuer, F .P.: The Theory of Open Quantum Systems. Oxford University Press, New York (2002). ISBN 0198520638,9780198520634

    Google Scholar 

  41. Diosi, L.: Calderia-leggett master equation and medium temperatures. Phys. A 199, 3-4, 517 (1993). ISSN 0378-4371

    Article  Google Scholar 

  42. Joos, E., et al.: Decoherence and the Appearance of a Classical World in Quantum Theory. Springer, Berlin (2003)

    Book  Google Scholar 

  43. Dekker, H.: Classical and quantum mechanics of the damped harmonic oscillator. Phys. Rep. 80, 1, 1 (1981). ISSN 0370-1573

    Article  MathSciNet  Google Scholar 

  44. Caldeira, A., Leggett, A.: Path integral approach to quantum brownian motion. Phys. A 121, 3, 587 (1983). ISSN 0378-4371

    Article  MathSciNet  Google Scholar 

  45. Sellier, J., Nedjalkov, M., Dimov, I.: An introduction to applied quantum mechanics in the Wigner Monte Carlo formalism. Phys. Rep. 577, 1 (2015). ISSN 0370-1573

    Article  MathSciNet  Google Scholar 

  46. Sellier, J .M.: A signed particle formulation of non-relativistic quantum mechanics. J. Comput. Phys. 297, 0, 254 (2015). ISSN 0021-9991

    Article  MathSciNet  Google Scholar 

  47. Sellier, J .M., et al.: Decoherence and time reversibility: the role of randomness at interfaces. J. Appl. Phys. 114, 17, 174902 (2013)

    Article  Google Scholar 

  48. Sellier, J., et al.: Two-dimensional transient Wigner particle model. In: International Conference on Simulation of Semiconductor Processes and Devices (SISPAD), 2013, pp. 404–407 (2013) ISSN 1946–1569

  49. Sellier, J., Dimov, I.: The WignerBoltzmann Monte Carlo method applied to electron transport in the presence of a single dopant. Comput. Phys. Commun. 185, 10, 2427 (2014). ISSN 0010-4655

    Article  Google Scholar 

  50. Ellinghaus, P., et al.: Distributed-memory parallelization of the Wigner Monte Carlo method using spatial domain decomposition. J. Comput. Electron. 14(1), 151 (2015). ISSN 1569-8025

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge support by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under Award DE-SC0008712. The work was performed using the resources of the UW-Madison Center for High Throughput Computing (CHTC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Jonasson.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jonasson, O., Knezevic, I. Dissipative transport in superlattices within the Wigner function formalism. J Comput Electron 14, 879–887 (2015). https://doi.org/10.1007/s10825-015-0734-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-015-0734-9

Keywords

Navigation