Skip to main content
Log in

Theoretical study of the modification of the oxide-reducing capacity of titania from selected dopant elements

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

The positions of the upper edge of the valence band and the lower edge of the conduction band of semiconducting materials such as TiO2 are closely related to the values of the respective oxidation or reduction potentials. The modifications suffered by a material of this type impact on the displacements of the aforementioned bands and thus on the redox potentials. In the present work, anatase and rutile bulk systems are analyzed for how different metallic and nonmetallic dopants located substitutionally where the “@” symbol indicates that the preceding element replaces the element after it or interstitially this position in the network is indicated with the letter “i” affect these potentials. From the analysis of the modifications, consequence of the doping, it can be noted that substitutional doping of nitrogen (N) at the oxygen site (N@O) improves the reduction potential of anatase and doped with interstitial (Ni) that of rutile. On the other hand, for both polymorphs, interstitial iron (Fei) doping has the best oxidant properties, followed by doping with Fe in titanium (Ti) site (Fe@Ti). The latter also has interesting magnetic properties to facilitate the extraction of the titania from the reaction media. The other doping elements studied, vanadium, platinum, silver, carbon and fluorine only improve the oxidation potential but all to a lesser extent than iron.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Kobwittaya, K., Sirivithayapakorn, S.: Photocatalytic reduction of nitrate over TiO2 and Ag-modified TiO2. J. Saudi Chem. Soc. 18, 291–298 (2014). https://doi.org/10.1016/j.jscs.2014.02.001

    Article  Google Scholar 

  2. Zouzelka, R., Rathousky, J.: Photocatalytic abatement of NOx pollutants in the air using commercial functional coating with porous morphology. Appl. Catal. B Environ. 217, 466–476 (2017). https://doi.org/10.1016/j.apcatb.2017.06.009

    Article  Google Scholar 

  3. Guan, X., Du, J., Meng, X., Sun, Y., Sun, B., Hu, Q.: Application of titanium dioxide in arsenic removal from water: a review. J. Hazard. Mater. 215–216, 1–16 (2012). https://doi.org/10.1016/j.jhazmat.2012.02.069

    Article  Google Scholar 

  4. Kanakaraju, D., Glass, B.D., Oelgemöller, M.: Titanium dioxide photocatalysis for pharmaceutical wastewater treatment. Environ. Chem. Lett. 12, 27–47 (2014). https://doi.org/10.1007/s10311-013-0428-0

    Article  Google Scholar 

  5. Kang, X., Liu, S., Dai, Z., He, Y., Song, X., Tan, Z.: Titanium dioxide: from engineering to applications. Catalysts 9, 191 (2019). https://doi.org/10.3390/catal9020191

    Article  Google Scholar 

  6. Zhang, M., Chen, T., Wang, Y.: Insights into TiO2 polymorphs: highly selective synthesis, phase transition, and their polymorph-dependent properties. RSC Adv. 7, 52755–52761 (2017). https://doi.org/10.1039/c7ra11515f

    Article  Google Scholar 

  7. Morgade, C.I.N., Cabeza, G.F.: First-principles study of codoping TiO2 systems capable of improving the specific surface area and the dissociation of H2O to generate H2 and O2. Comput. Mater. Sci. 127, 204–210 (2017). https://doi.org/10.1016/j.commatsci.2016.10.038

    Article  Google Scholar 

  8. Pauling, L.: The principles determining the structure of complex ionic crystals. J. Am. Chem. Soc. 51, 1010–1026 (1929). https://doi.org/10.1021/ja01379a006

    Article  Google Scholar 

  9. Born, M., Huang, K.: Dynamical Theory of Crystal Lattice. Oxford Classic Texts in the Physical Sciences (1954)

  10. Ryu, J., Choi, W.: Substrate-specific photocatalytic activities of TiO2 and multiactivity test for water treatment application. Environ. Sci. Technol. 42, 294–300 (2008). https://doi.org/10.1021/es071470x

    Article  Google Scholar 

  11. Schneider, J., Matsuoka, M., Takeuchi, M., Zhang, J., Horiuchi, Y., Anpo, M., Bahnemann, D.W.: Understanding TiO2 photocatalysis: mechanisms and Materials. Chem. Rev. 114, 9919–9986 (2014). https://doi.org/10.1021/cr5001892

    Article  Google Scholar 

  12. Vorontsov, A.V., Kabachkov, E.N., Balikhin, I.L., Kurkin, E.N., Troitskii, V.N., Smirniotis, P.G.: Correlation of surface area with photocatalytic activity of TiO2. J. Adv. Oxid. Technol. 21, 127–137 (2018). https://doi.org/10.26802/jaots.2017.0063

    Article  Google Scholar 

  13. Cheng, H., Wang, J., Zhao, Y., Han, X.: Effect of phase composition, morphology, and specific surface area on the photocatalytic activity of TiO2 nanomaterials. RSC Adv. 4, 47031–47038 (2014). https://doi.org/10.1039/c4ra05509h

    Article  Google Scholar 

  14. Yan, H., Wang, X., Yao, M., Yao, X.: Band structure design of semiconductors for enhanced photocatalytic activity: the case of TiO2. Prog. Nat. Sci. Mater. Int. 23, 402–407 (2013). https://doi.org/10.1016/j.pnsc.2013.06.002

    Article  Google Scholar 

  15. Morgade, C.I.N., Vignatti, C.I., Avila, M.S., Cabeza, G.F.: Theoretical and experimental analysis of the oxidation of CO on Pt catalysts supported on modified TiO2(101). J. Mol. Catal. A: Chem. 407, 102–112 (2015). https://doi.org/10.1016/j.molcata.2015.06.024

    Article  Google Scholar 

  16. Morgade, C.I.N., Castellani, N.J., Cabeza, G.F.: Theoretical analysis of band alignment and charge carriers migration in mixed-phase TiO2 systems. J. Comput. Electron. 17, 1505–1514 (2018). https://doi.org/10.1007/s10825-018-1232-7

    Article  Google Scholar 

  17. Humayun, M., Raziq, F., Khan, A., Luo, W.: Modification strategies of TiO2 for potential applications in photocatalysis: a critical review. Green Chem. Lett. Rev. 11, 86–102 (2018). https://doi.org/10.1080/17518253.2018.1440324

    Article  Google Scholar 

  18. Kresse, G., Furthmüller, J.: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B - Condens. Matter Mater. Phys. 54, 11169–11186 (1996). https://doi.org/10.1103/physrevb.54.11169

    Article  Google Scholar 

  19. Blöchl, P.E.: Projector augmented-wave method. Phys. Rev. B. 50, 17953–17979 (1994). https://doi.org/10.1103/PhysRevB.50.17953

    Article  Google Scholar 

  20. Perdew, J.P., Wang, Y.: Accurate and simple density functional for the electronic exchange energy: generalized gradient approximation. Phys. Rev. B. 33, 8800–8802 (1986). https://doi.org/10.1103/PhysRevB.33.8800

    Article  Google Scholar 

  21. Methfessel, M., Paxton, A.T.: High-precision sampling for Brillouin-zone integration in metals. Phys. Rev. B. 40, 3616–3621 (1989). https://doi.org/10.1103/PhysRevB.40.3616

    Article  Google Scholar 

  22. Dudarev, S.L., Botton, G.A., Savrasov, S.Y., Humphreys, C.J., Sutton, A.P.: Electron-energy-loss spectra and the structural stability of nickel oxide: an LSDA + U study. Phys. Rev. B. 57, 1505–1509 (1998). https://doi.org/10.1103/PhysRevB.57.1505

    Article  Google Scholar 

  23. Bader, R.F.W.: Atoms in Molecules—A Quantum Theory. Oxford University Press, Oxford (1990)

    Google Scholar 

  24. Momma, K., Izumi, F.: VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 44, 1272–1276 (2011). https://doi.org/10.1107/S0021889811038970

    Article  Google Scholar 

  25. Gomes, J., Lincho, J., Domingues, E., Quinta-Ferreira, R.M., Martins, R.C.: N-TiO2 photocatalysts: a review of their characteristics and capacity for emerging contaminants removal. Water (Switzerland) 11, 373 (2019). https://doi.org/10.3390/w11020373

    Article  Google Scholar 

  26. Morgade, C.I.N., Cabeza, G.F.: Synergetic interplay between metal (Pt) and nonmetal (C) species in codoped TiO2: a DFT + U study. Comput. Mater. Sci. 111, 513–524 (2016). https://doi.org/10.1016/j.commatsci.2015.09.065

    Article  Google Scholar 

  27. Dozzi, M.V., D’Andrea, C., Ohtani, B., Valentini, G., Selli, E.: Fluorine-doped TiO2 materials: photocatalytic activity vs time-resolved photoluminescence. J. Phys. Chem. C 117, 25586–25595 (2013). https://doi.org/10.1021/jp4095563

    Article  Google Scholar 

  28. Zhou, W., Liu, Q., Zhu, Z., Zhang, J.: Preparation and properties of vanadium-doped TiO2 photocatalysts. J. Phys. D Appl. Phys. 43, 2–7 (2010). https://doi.org/10.1088/0022-3727/43/3/035301

    Article  Google Scholar 

  29. Hu, Y., Song, X., Jiang, S., Wei, C.: Enhanced photocatalytic activity of Pt-doped TiO2 for NOx oxidation both under UV and visible light irradiation: a synergistic effect of lattice Pt4+ and surface PtO. Chem. Eng. J. 274, 102–112 (2015). https://doi.org/10.1016/j.cej.2015.03.135

    Article  Google Scholar 

  30. Schvval, A.B., Juan, A., Cabeza, G.F.: Theoretical study of the role of the interface of Ag4 nanoclusters deposited on TiO2(110) and TiO2(101). Appl. Surf. Sci. (2019). https://doi.org/10.1016/j.apsusc.2019.05.291

    Article  Google Scholar 

  31. Ghorbanpour, M., Atabak, F.: Iron-doped TiO2 catalysts with photocatalytic activity. J. Water Environ. Nanotechnol. 4, 60–66 (2019). https://doi.org/10.22090/jwent.2019.01.006

    Article  Google Scholar 

  32. Buckeridge, J., Butler, K.T., Catlow, C.R.A., Logsdail, A.J., Scanlon, D.O., Shevlin, S.A., Woodley, S.M., Sokol, A.A., Walsh, A.: Polymorph engineering of TiO2: demonstrating how absolute reference potentials are determined by local coordination. Chem. Mater. 27, 3844–3851 (2015). https://doi.org/10.1021/acs.chemmater.5b00230

    Article  Google Scholar 

  33. Lee, J., Kim, J., Choi, W.: TiO2 photocatalysis for the redox conversion. Aquat. Redox Chem. Ch. 10, 15–20 (2011). https://doi.org/10.1021/bk-2011-1071.ch010

    Article  Google Scholar 

  34. Kyung, H., Lee, J., Choi, W.: Simultaneous and synergistic conversion of dyes and heavy metal ions in aqueous TiO2 suspensions under visible-light illumination. Environ. Sci. Technol. 39, 2376–2382 (2005). https://doi.org/10.1021/es0492788

    Article  Google Scholar 

  35. Bard, A.J., Parsons, R., Jordan, J.: Standard Potentials in Aqueous Solution. Taylor & Francis, London (1985)

    Google Scholar 

  36. Di Valentin, C., Finazzi, E., Pacchioni, G., Selloni, A., Livraghi, S., Paganini, M.C., Giamello, E.: N-doped TiO2: theory and experiment. Chem. Phys. 339, 44–56 (2007). https://doi.org/10.1016/j.chemphys.2007.07.020

    Article  Google Scholar 

  37. McCaldin, J.O., McGill, T.C., Mead, C.A.: Correlation anion. Electronegativity 61, 1249–1252 (1975). https://doi.org/10.1097/BRS.0b013e3181cddbbf

    Article  Google Scholar 

  38. Harrison, W.A., Tersonff, J.: Tight-binding theory of heterojunction band lineups and interface dipoles. J. Vac. Sci. Technol. B Microelectron. Nanom. Struct. 4, 1068 (1986). https://doi.org/10.1116/1.583544

    Article  Google Scholar 

  39. Klein, A.: Energy band alignment at interfaces of semiconducting oxides: a review of experimental determination using photoelectron spectroscopy and comparison with theoretical predictions by the electron affinity rule, charge neutrality levels, and the common anion rule. Thin Solid Films 520, 3721–3728 (2012). https://doi.org/10.1016/j.tsf.2011.10.055

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the financial support from the Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) and the Universidad Nacional del Sur (UNS) (PGI: 24/F068). Universidad Tecnológica Nacional, Facultad Regional Bahía Blanca (UTN-FRBB).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cecilia I. N. Morgade.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 23 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schvval, A.B., Jiménez, M.J., Fuente, S. et al. Theoretical study of the modification of the oxide-reducing capacity of titania from selected dopant elements. J Comput Electron 19, 493–506 (2020). https://doi.org/10.1007/s10825-020-01454-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-020-01454-0

Keywords

Navigation