Skip to main content
Log in

Prediction of the structural, electronic, and piezoelectric properties of narrow-bandgap compounds FeVX (X = P, As, Sb)

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

A systematic theoretical investigation is carried out on the possible piezoelectric effect in the half-Heusler FeVX (X = P, As, Sb) compounds crystallizing in the cubic MgAgAs-type structure C1b by combining density functional theory (DFT) and perturbation theory (DFPT) based on the pseudopotential plane wave (PP-PW) method implemented in the ABINIT code. The ground-state properties such as the lattice constants, and the bulk modulus and its pressure derivative are obtained using both the local density approximation and the generalized gradient approximation for the exchange–correlation functional, and the results are compared with other studies. The results for the electronic properties reveal that all the compounds exhibit semiconducting behavior with a narrow indirect bandgap. In addition, the elastic, dielectric, and piezoelectric constants are computed using density functional perturbation theory. The title compounds are found to exhibit a good electromechanical coupling coefficient (k14). No experimental or theoretical data are available for their piezoelectric properties. Thus, the results of this study can be considered to represent theoretical predictions of the properties of new piezoelectric half-Heusler compounds that can be selected based on the values of their piezoelectric coefficient (e14), which are greater than the value of 0.16 C/m2 measured empirically for GaAs. Finally, the results presented herein shed light on the use of such piezoelectricity as a possible effect in various applications such as micromechanical actuators, sensors, and self-powered devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Van Randeraat, J., Setterington, R.E.: N.V. Philips’ Gloeilanpenfabrieken. Eindhoven, p. 202 (1974)

  2. Safari, A., Akdoğan, E.K. (eds.) Piezoelectric and Acoustic Materials for Transducer Applications. (2008). https://doi.org/10.1007/978-0-387-76540-2

  3. Wu, X., Vanderbilt, D., Hamann, D.R.: Systematic treatment of displacements, strains, and electric fields in density-functional perturbation theory. Phys. Rev. B 72, 035105 (2005)

    Article  Google Scholar 

  4. Baroni, S., de Gironcoli, S., Dal Corso, A., Giannozzi, P.: Phonons and related crystal properties from density-functional perturbation theory. Rev. Mod. Phys. 73, 515 (2001)

    Article  Google Scholar 

  5. Roy, A., Bennett, J.W., Rabe, K.M., Vanderbilt, D.: Half-Heusler semiconductors as piezoelectrics. Phys. Rev. Lett. 109, 037602 (2012)

    Article  Google Scholar 

  6. Nowotny, H., Sibert, W.: Ternäre Valenzverbindungen in den Systemen Kupfer (Silber)–Arsen (Antimon, Wismut)–Magnesium. Z. Metallkd 33, 391–394 (1941)

    Google Scholar 

  7. Ma, J., Hegde, V.I., Munira, K., Xie, Y., Keshavarz, S., Mildebrath, D.T., Avik, C.W., Ghosh, W., Butler, W.H.: Computational investigation of half-Heusler compounds for spintronics applications. Phys. Rev. B 95, 024411 (2017)

    Article  Google Scholar 

  8. Gautier, R., Zhang, X., Hu, L., Yu, L., Lin, Y., Sunde, T.O.L., Chon, D., Poeppelmeier, K.R., Zunger, A.: Prediction and accelerated laboratory discovery of previously unknown 18-electron ABX compounds. Nat. Chem. 7, 308 (2015)

    Article  Google Scholar 

  9. Chibani, S., Arbouche, O., Amara, K., et al.: A computational study of the optoelectronic and thermoelectric properties of HfIrX (X = As, Sb and Bi) in the cubic LiAlSi-type structure. J. Comput. Electron. 16, 765–775 (2017)

    Article  Google Scholar 

  10. Chibani, S., Arbouche, O., Zemouli, M., Benallou, Y., Amara, K., Chami, N., Ameri, M., El Keurti, M.: First-principles investigation of structural, mechanical, electronic, and thermoelectric properties of Half-Heusler compounds RuVX (X = As, P, and Sb). Comput. Condens. Matter 16, e00312 (2018). https://doi.org/10.1016/j.cocom.2018.e00312

    Article  Google Scholar 

  11. Chibani, S., Arbouche, O., Zemouli, M., et al.: Ab initio prediction of the structural, electronic, elastic, and thermoelectric properties of half-Heusler ternary compounds TiIrX (X = As and Sb). J. Electron. Mater. 47, 196–204 (2018)

    Article  Google Scholar 

  12. Li, G., Kurosaki, K., Ohishi, Y., Muta, H., Yamanaka, S.: High temperature thermoelectric properties of half-Heusler compound PtYSb. Jpn. J. Appl. Phys. 52, 041804 (2013)

    Article  Google Scholar 

  13. Yamamoto, A., Takeuchi, T.: The potential of FeVSb half-Heusler phase for practical thermoelectric material. J. Electron. Mater. 46, 3200–3206 (2017)

    Article  Google Scholar 

  14. Fu, C., Xie, H., Zhu, T.J., Xie, J., Zhao, X.B.: Enhanced phonon scattering by mass and strain field fluctuations in Nb substituted FeVSb half-Heusler thermoelectric materials. J. Appl. Phys. 112, 124915 (2012)

    Article  Google Scholar 

  15. Graf, T., Felser, C., Parkin, S.S.: Simple rules for the understanding of Heusler compound. Prog. Solid State Chem. 39, 1–50 (2011)

    Article  Google Scholar 

  16. Shi, F., Si, M.S., Xie, J., Mi, K., Xiao, C., Luo, Q.: Hybrid density functional study of bandgaps for 27 new proposed half-Heusler semiconductors. J. Appl. Phys. 122, 215701 (2017)

    Article  Google Scholar 

  17. Stadnyk, Y., Horyn, A., Sechovsky, V., Romaka, L., Mudryk, Y., Tobola, J., Stopa, T., Kaprzyk, S., Kolomiets, A.: Crystal structure, electrical transport properties and electronic structure of the VFe1−xCuxSb solid solution. J. Alloys Compd. 402, 30 (2005)

    Article  Google Scholar 

  18. Roy-Montreuil, M., Deyris, B., Michel, A., Rouault, A., Heritier, P., Nylund, A., Senateur, J., Fruchart, R.: Nouveaux composes ternaires MM'P et MM'As interactions metalliques et structures. Mater. Res. Bull. 7, 813–826 (1972)

    Article  Google Scholar 

  19. Bennett, J.W.: Hexagonal A B C semiconductors as ferroelectrics. Phys. Rev. Lett. 109, 167602 (2012)

    Article  Google Scholar 

  20. Kripyakevich, P., Markiv, V.Y.: Crystal structures of ternary compounds in the systems Ti (V)–Fe (Co, Ni)–Sn (Sb). Dopovidi Akademii Nauk Ukrains’koi RSR 12, 1606 (1963)

    Google Scholar 

  21. Saal, J.E., Kirklin, S., Aykol, M., Meredig, B., Wolverton, C.: Materials design and discovery with high-throughput density functional theory: the open quantum materials database (OQMD). JOM 65, 1501–1509 (2013)

    Article  Google Scholar 

  22. Kirklin, S., Saal, J.E., Meredig, B., Thompson, A., Doak, J.W., Aykol, M., Rühl, S., Wolverton, C.: The open quantum materials database (OQMD): assessing the accuracy of DFT formation energies. Comput. Mater. 1, 15010 (2015). https://doi.org/10.1038/npjcompumats.2015.10

    Article  Google Scholar 

  23. D. Ceperley 1978 Phys. Rev. B 18 3126; D. M. Ceperley and B. J. Alder Phys. Rev. Lett. 45, 566 (1980)

  24. Perdew, J.P., Wang, Y.: Accurate and simple analytic representation of the electron-gas correlation energy. Phys. Rev. B 45, 13244 (1992)

    Article  Google Scholar 

  25. Baroni, S., Giannozzi, P., Testa, A.: Green’s-function approach to linear response in solids. Phys. Rev. Lett. 58, 1861 (1987)

    Article  Google Scholar 

  26. Gonze, X., Lee, C.: Dynamical matrices, born effective charges, dielectric permittivity tensors, and interatomic force constants from density-functional perturbation theory. Phys. Rev. B 55, 10355 (1997)

    Article  Google Scholar 

  27. ABINIT code is a common project of the Université Catholique de Louvain, Corning Incorporated, and other contributors. http://www.abinit.org. Accessed 8 Nov 2019

  28. http://opium.sourceforge.net. Accessed 1 Feb 2020

  29. King-Smith, R.D., Vanderbilt, D.: Theory of polarization of crystalline solids. Phys. Rev. B 47, 1651 (1993)

    Article  Google Scholar 

  30. Resta, R.: Macroscopic polarization in crystalline dielectrics: the geometric phase approach. Rev. Mod. Phys. 66, 899 (1994)

    Article  Google Scholar 

  31. Gonze, X., Jollet, F., et al.: Recent developments in the ABINIT software package. Comput. Phys. Commun. 205, 106–131 (2016)

    Article  Google Scholar 

  32. Monkhorst, H.J., Pack, J.D.: Special points for Brillouin-zone integrations. Phys. Rev. B. 13, 5188 (1976)

    Article  MathSciNet  Google Scholar 

  33. Murnaghan, F.D.: The compressibility of media under extreme pressures. Proc. Natl. Acad. Sci. 30, 5390 (1944)

    MathSciNet  MATH  Google Scholar 

  34. Arlt, G., Quadflieg, P.: Piezoelectricity in iii–v compounds with a phenomenological analysis of the piezoelectric effect. Phys. Status Solidi 25, 323 (1968)

    Article  Google Scholar 

  35. He, L., Liu, F., Hautier, G., Oliveira, M.J.T., Marques, M.A.L., Vila, F.D., Rehr, J.J., Rignanese, G.M., Zhou, A.: Accuracy of generalized gradient approximation functionals for density-functional perturbation theory calculations. Phys. Rev. B 89, 064305 (2014). https://doi.org/10.1103/physrevb.89.064305

    Article  Google Scholar 

  36. Chami, N., Arbouche, O., Chibani, S., et al.: Computational prediction of structural, electronic, elastic, and thermoelectric properties of FeVX (X = As, P) half-Heusler compounds. J. Electron. Mater. (2020). https://doi.org/10.1007/s11664-020-08225-4

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Arbouche.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Harzellaoui, A., Arbouche, O. & Amara, K. Prediction of the structural, electronic, and piezoelectric properties of narrow-bandgap compounds FeVX (X = P, As, Sb). J Comput Electron 19, 1365–1372 (2020). https://doi.org/10.1007/s10825-020-01543-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-020-01543-0

Keywords

Navigation