Skip to main content
Log in

The design of a new heterogate superjunction insulated-gate bipolar transistor

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

A new heteromaterial planar-gate superjunction insulated-gate bipolar transistor (HG IGBT) is proposed herein. It consists of stepped gate oxides with thickness of 50 nm, 100 nm, and 150 nm. The gate of the proposed structure is constructed using two materials with different workfunction in a triple-segment polygate configuration, connected via metal on the top. The first and last segment consist of the higher-workfunction material (\(P^{+}\) poly) while the mid segment is formed by a lower-workfunction material (\(N^{+}\) poly). The first \(P^{+}\) poly gate near the emitter with a thin (50 nm) oxide layer enables better control over charge carriers in the channel. In addition, the last \(P^{+}\) poly gate with a thicker (150 nm) oxide layer results in a reduction of the gate-to-collector capacitance. Technology computer-aided design (TCAD) simulation results show that the proposed device offers a 23%, 58%, and 22% reduction in the area-specific on resistance (\(R_{{\mathrm {on}}} \cdot A\)), switching delay, and turn-off time, respectively. Additionally, the device exhibits a 44.4% improvement in the peak transconductance for given breakdown voltage (BV). Furthermore, the off-state energy loss and on-state voltage drop are reduced by 38% and 22%, respectively. It is also observed that the proposed device offers an improved figure of merit (FOM) as compared with the conventional structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Yamamoto, T., Fukunaga, Y., Ikoma, D., Miyaoku, Y., Miura-Mattausch, M.: Compact modeling of advanced Si-IGBT for circuit design. In: International Symposium on Devices, Circuits and Systems (ISDCS), pp. 1–6 (2018)

  2. Fujihira, T.: Theory of semiconductor superjunction devices. Jpn. J. Appl. Phys. 36(10), 6254 (1997)

    Article  Google Scholar 

  3. Rajabi, S., Mandal, S., Ercan, B., Li, H., Laurent, M.A., Keller, S., Chowdhury, S.: A demonstration of nitrogen polar gallium nitride current aperture vertical electron transistor. IEEE Electron Dev. Lett. 40(6), 885–888 (2019)

    Article  Google Scholar 

  4. Saremi, M., Hathwar, R., Dutta, M., Koeck, F.A.M., Nemanich, R.J., Chowdhury, S., Goodnick, S.M.: Analysis of the reverse IV characteristics of diamond-based PIN diodes. Appl. Phys. Lett. 111(4), 043507 (2017)

    Article  Google Scholar 

  5. Saremi, M.: Modeling and simulation of the programmable metallization cells (PMCs) and diamond-based power devices. Arizona State University, Tempe, AZ, USA (2017). (Ph.D. Thesis)

  6. Saremi, M., Saremi, M., Niazi, H., Saremi, M., Goharrizi, A.Y.: SOI LDMOSFET with up and down extended stepped drift region. J. Electron. Mater. 46(10), 5570–5576 (2017)

    Article  Google Scholar 

  7. Moghadam, H.A., Dimitrijev, S., Han, J., Haasmann, D., Aminbeidokhti, A.: Transient-current method for measurement of active near-interface oxide traps in 4H-SiC MOS capacitors and MOSFETs. IEEE Trans. Electron Dev. 62(8), 2670–2674 (2015)

    Article  Google Scholar 

  8. Baliga, B.J., Adler, M.S., Love, R.P., Gray, P.V., Zommer, N.D.: The insulated gate transistor: a new three-terminal mos-controlled bipolar power device. IEEE Trans. Electron Dev. 31(6), 821–828 (1984)

    Article  Google Scholar 

  9. Baliga, B.J.: The IGBT Device: Physics, Design and Applications of the Insulated Gate Bipolar Transistor. William Andrew, Amsterdam (2015)

    Google Scholar 

  10. Huang, M., Gao, B., Yang, Z., Lai, L., Gong, M.: A carrier-storage-enhanced superjunction IGBT with ultralow loss and on-state voltage. IEEE Electron Dev. Lett. 39(2), 264–267 (2018)

    Article  Google Scholar 

  11. Iwamuro, N., Laska, T.: Igbt history, state-of-the-art, and future prospects. IEEE Trans. Electron Dev. 64(3), 741–752 (2017)

    Article  Google Scholar 

  12. Hsieh, A.P.S., Camuso, G., Udrea, F., Ng, C., Tang, Y., Vytla, R.K., Ranjan, N., Charles, A.: Superjunction IGBT vs. FS IGBT for 200 C operation. In: IEEE 27th international symposium on power semiconductor devices and IC’s (ISPSD), pp. 137–140 (2015)

  13. Antoniou, M., Udrea, F., Bauer, F.: The superjunction insulated gate bipolar transistor optimization and modeling. IEEE Trans. Electron Dev. 57(3), 594–600 (2010)

    Article  Google Scholar 

  14. Oh, K.H., Kim, J., Seo, H., Jung, J., Kim, E., Kim, S.S., Yun, C.: Experimental investigation of 650V superjunction IGBTs. In: Proceedings of the 28th International Symposium on Power Semiconductor Devices and ICs (ISPSD), pp. 299–302 (2016)

  15. Antoniou, M., Lophitis, N., Udrea, F., Bauer, F., Vemulapati, U.R., Badstuebner, U.: On the investigation of the anode side superjunction igbt design concept. IEEE Electron Dev. Lett. 38(8), 1063–1066 (2017)

    Article  Google Scholar 

  16. Antoniou, M., Udrea, F., Bauer, F., Nistor, I.: The semi-superjunction IGBT. IEEE Electron Dev. Lett. 31(6), 591–593 (2010)

    Article  Google Scholar 

  17. Vaidya, M., Naugarhiya, A., Verma, S.: Trench IGBT with stepped doped collector for low energy loss. Semicond. Sci. Technol. 35(2), 025015 (2020)

    Article  Google Scholar 

  18. Gupta, N., Naugarhiya, A.: 1.4 kV Planar gate superjunction igbt with stepped doping profile in drift and collector region. Silicon (2020). https://doi.org/10.1007/s12633-020-00456-8

    Article  Google Scholar 

  19. Sithanandam, R., Kumar, M.J.: Linearity and speed optimization in SOI LDMOS using gate engineering. Semicond. Sci. Technol. 25(1), 015006 (2009)

    Article  Google Scholar 

  20. Saxena, R.S., Kumar, M.J.: A stepped oxide hetero-material gate trench power MOSFET for improved performance. IEEE Trans. Electron Dev. 56(6), 1355–1359 (2009)

    Article  Google Scholar 

  21. Gupta, N., Singh, S., Naugarhiya, A.: An insulated gate bipolar transistor with three-layer poly gate for improved figure of merit. J. Mater. Sci. Mater. Electron. 31(18), 15513–15521 (2020)

    Article  Google Scholar 

  22. Nautiyal, P., Naugarhiya, A., Verma, S.: Workfunction engineered stepped gate SJ UMOS with reduced specific resistance for high speed applications. Semicond. Sci. Technol. 34(9), 095016 (2019)

    Article  Google Scholar 

  23. Saxena, R.S., Kumar, M.J.: Dual-material-gate technique for enhanced transconductance and breakdown voltage of trench power MOSFETs. IEEE Trans. Electron Dev. 56(3), 517–522 (2009)

    Article  MathSciNet  Google Scholar 

  24. Khanna, V.K.: Insulated gate bipolar transistor IGBT theory and design. Wiley, Hoboken (2004)

    Google Scholar 

  25. Minato, T., Nitta, T., Uenisi, A., Yano, M., Harada, M., Hine, S.: Which is cooler, trench or multi-epitaxy? Cutting edge approach for the silicon limit by the super trench power MOS-FET (STM). In: Proceedings of the 12th International Symposium on Power Semiconductor Devices ICs (Cat. No.00CH37094), pp. 73–76 (2000)

  26. Udrea, F., Deboy, G., Fujihira, T.: Superjunction power devices, history, development, and future prospects. IEEE Trans. Electron Dev. 64(3), 713–727 (2017)

    Article  Google Scholar 

  27. Xing, H., Dora, Y., Chini, A., Heikman, S., Keller, S., Mishra, U.K.: High breakdown voltage AlGaN-GaN HEMTs achieved by multiple field plates. IEEE Electron Dev. Lett. 25(4), 161–163 (2004)

    Article  Google Scholar 

  28. SILVACO, I.: ATLAS Users Manual, Santa Clara, CA, Ver, 5 (2011)

  29. Nadda, K., Kumar, M.J.: Vertical bipolar charge plasma transistor with buried metal layer. Sci. Rep. 5, 7860 (2015)

    Article  Google Scholar 

  30. Huang, J., Huang, H., Lyu, X., Chen, X.B.: Simulation study of a low switching loss FD-IGBT with high \(dI/dt\) and \(dV/dt\) controllability. IEEE Trans. Electron Dev. 65(12), 5545–5548 (2018)

    Article  Google Scholar 

  31. Bauer, F.D.: The super junction bipolar transistor: a new silicon power device concept for ultra low loss switching applications at medium to high voltages. Solid State Electron. 48(5), 705–714 (2004)

    Article  Google Scholar 

  32. Kumar, M.J., Sithanandam, R.: Extended-\(p^{+}\) stepped gate LDMOS for improved performance. IEEE Trans. Electron Dev. 57(7), 1719–1724 (2010)

    Article  Google Scholar 

  33. Na, K.Y., Kim, Y.S.: Silicon complementary metal-oxide-semiconductor field-effect transistors with dual work function gate. Jpn. J. Appl. Phys. 45(12R), 9033 (2006)

    Article  Google Scholar 

  34. Dash, S., Sahoo, G.S., Mishra, G.P.: Subthreshold swing minimization of cylindrical tunnel FET using binary metal alloy gate. Superlattices Microstruct. 91, 105–111 (2016)

    Article  Google Scholar 

  35. Sumitomo, M., Sakane, H., Arakawa, K., Higuchi, Y., Matsui, M.: Injection control technique for high speed switching with a double gate PNM-IGBT. In: Proceedings of the 25th International Symposium on Power Semiconductor Devices and IC’s (ISPSD), pp. 33–36 (2013)

  36. Harada, S., Tsukuda, M., Omura, I.: Optimal double sided gate control of IGBT for lower turn-off loss and surge voltage suppression. In: Proceedings of the 9th International Conference on Integrated Power Electronics Systems, pp. 1–5 (2016)

  37. Zhang, J., Xia, X., Li, Z., Li, W., Shan, Y., Ren, M., Zhang, B., Li, Z.: A novel high performance enhanced-planar IGBT with P-type buried layer. Int. Conf. Commun. Circ. Syst. (ICCCAS) 1, 327–330 (2013)

    Google Scholar 

  38. Huang, S., Sheng, K., Udrea, F., Amaratunga, G.A.J.: A dynamic n-buffer insulated gate bipolar transistor. Solid State Electron. 45(1), 173–182 (2001)

    Article  Google Scholar 

  39. Zhong, C.W., Hong, L.Z., Bo, Z., Min, R., Ping, Z.J., Yong, L., Ji, L.Z.: A snapback suppressed reverse-conducting IGBT with uniform temperature distribution. Chin. Phys. B 23(1), 018505 (2013)

    Google Scholar 

  40. Antoniou, M., Udrea, F., Bauer, F., Nistor, I.: A new way to alleviate the RC IGBT snapback phenomenon: the super junction solution. In: Proceedings of the 22nd International Symposium on Power Semiconductor Devices and IC’s (ISPSD), pp. 153–156 (2010)

  41. Mori, M., Oyama, K., Arai, T., Sakano, J., Nishimura, Y., Masuda, K., Saito, K., Uchino, Y., Homma, H.: A planar-gate high-conductivity IGBT (HiGT) with hole-barrier layer. IEEE Trans. Electron Dev. 54(6), 1515–1520 (2007)

    Article  Google Scholar 

  42. Baliga, B.J.: Fundamentals of Power Semiconductor Devices. Springer, New York (2010)

    Google Scholar 

  43. Chu, K.W., Lee, W.S., Cheng, C.Y., Huang, C.F., Zhao, F., Lee, L.S., Chen, Y.S., Lee, C.Y., Tsai, M.J.: Demonstration of lateral IGBTs in 4H-SiC. IEEE Electron Dev. Lett. 34(2), 286–288 (2013)

    Article  Google Scholar 

  44. Donlon, J.F., Motto, E.R., Takahashi, T., Fujii, H., Satoh, K.: Chip improvements for future IGBT modules. In: IEEE Industry Applications Society Annual Meeting, pp. 1–7 (2008)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Namrata Gupta.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, N., Naugarhiya, A. The design of a new heterogate superjunction insulated-gate bipolar transistor. J Comput Electron 20, 883–891 (2021). https://doi.org/10.1007/s10825-021-01662-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-021-01662-2

Keywords

Navigation