Skip to main content
Log in

Computational principles underlying the recognition of acoustic signals in insects

  • Published:
Journal of Computational Neuroscience Aims and scope Submit manuscript

Abstract

Many animals produce pulse-like signals during acoustic communication. These signals exhibit structure on two time scales: they consist of trains of pulses that are often broadcast in packets—so called chirps. Temporal parameters of the pulse and of the chirp are decisive for female preference. Despite these signals being produced by animals from many different taxa (e.g. frogs, grasshoppers, crickets, bushcrickets, flies), a general framework for their evaluation is still lacking. We propose such a framework, based on a simple and physiologically plausible model. The model consists of feature detectors, whose time-varying output is averaged over the signal and then linearly combined to yield the behavioral preference. We fitted this model to large data sets collected in two species of crickets and found that Gabor filters—known from visual and auditory physiology—explain the preference functions in these two species very well. We further explored the properties of Gabor filters and found a systematic relationship between parameters of the filters and the shape of preference functions. Although these Gabor filters were relatively short, they were also able to explain aspects of the preference for signal parameters on the longer time scale due to the integration step in our model. Our framework explains a wide range of phenomena associated with female preference for a widespread class of signals in an intuitive and physiologically plausible fashion. This approach thus constitutes a valuable tool to understand the functioning and evolution of communication systems in many species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Akre, K.L., Farris, H.E., Lea, A.M., Page, R.A., Ryan, M.J. (2011). Signal perception in frogs and bats and the evolution of mating signals. Science, 333(6043), 751–752.

    Article  PubMed  CAS  Google Scholar 

  • Alexander, R.D. (1957). The song relationships of four species of ground crickets (Orthoptera: Gryllidae: Nemobius). Ohio Journal of Science, 57(3), 153–163.

    Google Scholar 

  • Alexander, R.D. (1962). Evolutionary change in cricket acoustical communication. Evolution, 16, 443–467.

    Article  Google Scholar 

  • Atencio, C.A., Sharpee, T.O., Schreiner, C.E. (2008). Cooperative nonlinearities in auditory cortical neurons. Neuron, 58, 956–966.

    Article  PubMed  CAS  Google Scholar 

  • Bush, S.L., & Schul, J. (2005). Pulse-rate recognition in an insect: evidence of a role for oscillatory neurons. Journal of Comparative Physiology A: Sensory Neural, and Behavioral Physiology, 192, 1–9.

    Google Scholar 

  • Carandini, M., & Heeger, D.J. (2012). Normalization as a canonical neural computation. Nature Reviews Neuroscience, 13(1), 51–62.

    Article  CAS  Google Scholar 

  • Clemens, J., Wohlgemuth, S., Ronacher, B. (2012). Nonlinear com putations underlying temporal and population sparseness in the auditory system of the grasshopper. Journal of Neuroscience, 32(29), 10,053–10,062.

    Article  CAS  Google Scholar 

  • Creutzig, F., Benda, J., Wohlgemuth, S., Stumpner, A., Ronacher, B., Herz, A.V.M. (2010). Timescale-invariant pattern recognition by feedforward inhibition and parallel signal processing. Neural 697 Computation, 22(6), 1493–1510.

    Article  PubMed  Google Scholar 

  • Desutter Grandcolas, L., & Robillard, T. (2003). Phylogeny and the evolution of calling songs in Gryllus (Insecta, Orthoptera, Gryllidae). Zoologica Scripta, 32(2), 173–183.

    Article  Google Scholar 

  • Fairhall, A.L., Burlingame, A.C., Narasimhan, R., Harris, R.A., Puchalla, J.L., Berry, M.J. (2006). Selectivity for multiple stimulus features in retinal ganglion cells. Journal of Neurophysiology, 96, 2724–2738.

    Article  PubMed  Google Scholar 

  • Gerhardt, C.H., & Huber, F. (2002). Acoustic Communication in Insects and Anurans. Chicago: University of Chicago Press.

    Google Scholar 

  • Giraud, A.L., & Poeppel, D. (2012). Cortical oscillations and speech processing: emerging computational principles and operations. Nature Neuroscience, 15(4), 511–517.

    Article  PubMed  CAS  Google Scholar 

  • Grobe, B., Rothbart, M.M., Hanschke, A., Hennig, R.M. (2012). Auditory processing at two time scales by the cricket Gryllus bimaculatus. Journal of Experimental Biology, 215(10), 1681–1690.

    Article  PubMed  Google Scholar 

  • Hennig, R.M. (2003). Acoustic feature extraction by cross-correlation in crickets? Journal of Comparative Physiology A: Sensory Neural, and Behavioral Physiology, 189(8), 589–598.

    Article  CAS  Google Scholar 

  • Hennig, R.M. (2009). Walking in Fourier’s space: algorithms for the computation of periodicities in song patterns by the cricket Gryllus bimaculatus. Journal of Comparative Physiology A: Sensory Neural, and Behavioral Physiology, 195(10), 971–987.

    Article  Google Scholar 

  • Hennig, R.M., & Weber, T. (1997). Filtering of temporal parameters of the calling song by cricket females of two closely related species: a behavioral analysis. Journal of Comparative Physiology A: Sensory Neural, and Behavioral Physiology, 180(6), 621–630.

    Article  Google Scholar 

  • Hoy, R., Hoikkala, A., Kaneshiro, K. (1988). Hawaiian courtship songs: evolutionary innovation in communication signals of Drosophila. Science, 240(4849), 217–219.

    Article  PubMed  CAS  Google Scholar 

  • Kostarakos, K., & Hedwig, B. (2012). Calling song recognition in female crickets: temporal tuning of identified brain neurons matches behavior. Journal of Neuroscience, 32(28), 9601–9612.

    Article  PubMed  CAS  Google Scholar 

  • Machens, C.K., Stemmler, M., Prinz, P., Krahe, R., Ronacher, B., Herz, A.V.M. (2001). Representation of acoustic communication signals by insect auditory receptor neurons. Journal of Neuroscience, 21(9), 3215–3227.

    PubMed  CAS  Google Scholar 

  • Mitchell, M. (1998). An introduction to genetic algorithms (complex adaptive systems) (3rd printing ed.). A Bradford Book.

  • Nagel, K.I., & Doupe, A.J. (2006). Temporal processing and adaptation in the songbird auditory forebrain. Neuron, 51(6), 845–859.

    Article  PubMed  CAS  Google Scholar 

  • Otte, D. (1992). Evolution of cricket songs. Journal of Orthoptera Research, 1(1), 25–49.

    Article  Google Scholar 

  • Phelps, S.M., & Ryan, M.J. (1998). Neural networks predict response biases of female túngara frogs. Proceedings of the Royal Society of London Series B, 265(1393), 279–285.

    Article  PubMed  CAS  Google Scholar 

  • Pillow, J.W., & Simoncelli, E.P. (2006). Dimensionality reduction in neural models: An information-theoretic generalization of spike-triggered average and covariance analysis. Journal of vision, 6, 414–428.

    Article  PubMed  Google Scholar 

  • Pillow, J.W., Shlens, J., Paninski, L., Sher, A., Litke, A.M., Chichilnisky, E.J., Simoncelli, E.P. (2008). Spatio-temporal correlations and visual signaling in a complete neuronal population. Nature, 454(7207), 995–999.

    Article  PubMed  CAS  Google Scholar 

  • Pollack, G.S., & Hoy, R. (1979). Temporal pattern as a cue for species-specific calling song recognition in crickets. Science, 204(4391), 429–432.

    Article  PubMed  CAS  Google Scholar 

  • Priebe, N.J., & Ferster, D. (2012). Mechanisms of neuronal computation in mammalian visual cortex. Neuron, 75(2), 194–208.

    Article  PubMed  CAS  Google Scholar 

  • Ronacher, B., & Stumpner, A. (1988). Filtering of behaviourally relevant temporal parameters of a grasshopper’s song by an auditory interneuron. Journal of Comparative Physiology A: Sensory Neural, and Behavioral Physiology, 163, 517–523.

    Article  Google Scholar 

  • Rothbart, M.M., & Hennig, R.M. (2012). The Steppengrille (Gryllus spec./assimilis): Selective filters and signal mismatch on two time scales. PLoS ONE, 7(9), e43975.

    Article  PubMed  CAS  Google Scholar 

  • Rothbart, M.M., & Hennig, R.M. (2012). Calling song signals and temporal preference functions in the cricket Teleogryllus leo. Journal of Comparative Physiology A: Sensory Neural, and Behavioral Physiology, 198(11), 817–825.

    Article  CAS  Google Scholar 

  • Safi, K., Heinzle, J., Reinhold, K. (2006). Species recognition influences female mate preferences in the common European grasshopper (Chorthippus biguttulus Linnaeus, 1758). Ethology, 112(12), 1225–1230.

    Article  Google Scholar 

  • Schmidt, A., Ronacher, B., Hennig, R.M. (2008). The role of frequency, phase and time for processing of amplitude modulated signals by grasshoppers. Journal of Comparative Physiology A: Sensory Neural, and Behavioral Physiology, 194(3), 221–233.

    Article  CAS  Google Scholar 

  • Schneider, E., & Hennig, R.M. (2012). Temporal resolution for calling song signals by female crickets, Gryllus bimaculatus. Journal of Comparative Physiology A: Sensory Neural, and Behavioral Physiology, 198(3), 181–191.

    Article  CAS  Google Scholar 

  • Schreiber, S., Erchova, I., Heinemann, U., Herz, A.V.M. (2004). Subthreshold resonance explains the frequency-dependent integration of periodic as well as random stimuli in the entorhinal cortex. Journal of Neurophysiology, 92(1), 408–415.

    Article  PubMed  Google Scholar 

  • Schul, J. (1998). Song recognition by temporal cues in a group of closely related bushcricket species (genus Tettigonia ). Journal of Comparative Physiology A: Sensory Neural, and Behavioral Physiology, 183(3), 401–410.

    Article  Google Scholar 

  • Smith, E.C., & Lewicki, M.S. (2006). Efficient auditory coding. Nature, 439(7079), 978–982.

    Article  PubMed  CAS  Google Scholar 

  • von Helversen, D. (1972). Gesang des M’́annchens und Lautschema des Weibchens bei der Feldheuschrecke Chorthippus biguttulus (Orthoptera, Acrididae). Journal of Comparative Physiology A: Sensory Neural, and Behavioral Physiology, 81(4), 381–422.

    Article  Google Scholar 

  • Webb, B., Wessnitzer, J., Bush, S.L., Schul, J., Buchli, J., Ijspeert, A. (2007). Resonant neurons and bushcricket behaviour. Journal of Comparative Physiology A: Sensory Neural, and Behavioral Physiology, 193(2), 285–288.

    Article  Google Scholar 

  • Weissman, D.B., Gray, D.A., Pham, H.T., Tijssen, P. (2012). Billions and billions sold: Pet-feeder crickets (Orthoptera: Gryllidae), commercial cricket farms, an epizootic densovirus, and government regulations make for a potential disaster. Zootaxa, 3504, 67–88.

    Google Scholar 

  • Zorovic, M., & Hedwig, B. (2011). Processing of species-specific auditory patterns in the cricket brain by ascending, local and descending neurons during standing and walking. Journal of Neurophysiology, 105, 2181–2194.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

We thank Klaus-Gerhardt Heller for valuable discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Clemens.

Additional information

Action Editor: Israel Nelken

This work was funded by grants from the Federal Ministry of Education and Research, Germany (01GQ1001A) and the Deutsche Forschungsgemeinschaft (SFB618, GK1589/1).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Clemens, J., Hennig, R.M. Computational principles underlying the recognition of acoustic signals in insects. J Comput Neurosci 35, 75–85 (2013). https://doi.org/10.1007/s10827-013-0441-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10827-013-0441-0

Keywords

Navigation