Skip to main content
Log in

Knowing the way home: strong philopatry of a highly mobile insect species, Brenthis ino

  • ORIGINAL PAPER
  • Published:
Journal of Insect Conservation Aims and scope Submit manuscript

Abstract

Mobility is crucial for the maintenance of viable metapopulations, but quantitative data to evaluate risks due to insufficient individual mobility of focal insect species are mostly lacking. We selected the butterfly Brenthis ino, a species typically confined to wet fallow grasslands in Central Europe and performed a mark–release–recapture study in a 3.2 ha study area with one big and one small patch of suitable habitat from 22 June to 23 July 2010. The position of each butterfly capture was measured with a GPS and transferred into a GIS. In total, we marked 984 individuals in 1,545 capture events and estimated that the cumulative population size was 2,400 individuals. The initial increase of adult males proceeded much faster than for females, similar to the protandrous population build-up known from other butterflies. Moved distances for both sexes usually did not exceed 80 m, and about 40 % of all individuals used less than 2 % of the available suitable habitat. All individuals switching to the other patch returned later to their patch of origin, confirming that B. ino is highly philopatric. We conclude that low effective mobility in B. ino produces much smaller home ranges than suggested by merely observing flight activities in the field, and that low tendencies towards long-distance movements significantly hamper the maintenance of metapopulations when patch density decreases due to landscape fragmentation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Baguette M (2003) Long distance dispersal and landscape occupancy in a metapopulation of the cranberry fritillary butterfly. Ecography 26:153–160

    Article  Google Scholar 

  • Baguette M, van Dyck H (2007) landscape connectivity and animal behaviour: functional grain as key determinant for dispersal. Landscape Ecol 22:1117–1129

    Article  Google Scholar 

  • Baguette M, Petit S, Quéva F (2000) Population spatial structure and migration of three butterfly species within the same habitat network: consequences for conservation. J Appl Ecol 37:100–108

    Article  Google Scholar 

  • Baker RR (1968) Sun orientation during migration in some British butterflies. Proc R Entomol Soc Lond A 43:89–95

    Google Scholar 

  • Baker RR (1969) The evolution of the migratory habit in butterflies. J Anim Ecol 38:703–746

    Article  Google Scholar 

  • Baker RR (1983) Insect territoriality. Ann Rev Entomol 28:65–89

    Article  Google Scholar 

  • Baker RR (1984) The dilemma: when and how to go or stay. In: Vane-Wright RI, Ackery PR (eds) The biology of butterflies, vol 11. Academic Press, London, pp 279–296

    Google Scholar 

  • Barton BJ, Bach CE (2005) Habitat Use by the federally endangered Mitchell’s Satyr Butterfly (Neonympha mitchellii mitchellii) in a Michigan Prairie Fen. Am Midl Nat 153:41–51

    Article  Google Scholar 

  • Bélisle M (2005) Measuring landscape connectivity: the challenge of behavioral landscape ecology. Ecology 86:1988–1995

    Article  Google Scholar 

  • Bennet AF (1999) Linkages in the landscape: the role of corridors and connectivity in wildlife conservation. IUCN Publications, Cambridge

    Google Scholar 

  • Bitzer RJ, Shaw KC (1995) Territorial behaviour of the red admiral, Vanessa atalanta (Lepidoptera: Nymphalidae). I. The role of climatic factors and early interaction frequency on territorial start time. J Insect Behav 8:47–66

    Article  Google Scholar 

  • Brinson MM, Malvárez AI (2002) Temperate freshwater wetlands: types, status, and threats. Environ Conserv 29:115–133

    Article  Google Scholar 

  • Burgman MA, Fox JC (2003) Bias in species range estimates from minimum convex polygons: implications for conservation and options for improved planning. Anim Conserv 6:19–28

    Article  Google Scholar 

  • Caro T (1999) The behaviour-conservation interface. Trends Ecol Evol 14:490

    Google Scholar 

  • Conradt L, Bodsworth EJ, Roper TJ, Thomas CD (2000) Non-random dispersal in the butterfly Maniola jurtina: implications for metapopulation models. Proc R Entomol Soc Lond B 267:1505–1510

    Article  CAS  Google Scholar 

  • Conradt L, Roper TJ, Thomas CD (2001) Dispersal behaviour of individuals in metapopulations of two British butterflies. Oikos 95:416–424

    Article  Google Scholar 

  • Cooch E, White GC (2007) Program MARK. A gentle introduction, 6th edn. http://www.phidort.org/software/mark/docs/book. Accessed on 2 Sept 2010

  • Cooper CB, Walters JR (2002) Experimental evidence of disrupted dispersal causing decline of an Australian passerine in fragmented habitat. Conserv Biol 16:471–478

    Article  Google Scholar 

  • Cozzi G, Müller CB, Krauss J (2008) How do local habitat management and landscape structure at different spatial scales affect fritillary butterfly distribution in fragmented wetlands? Landscape Ecol 23:269–283

    Article  Google Scholar 

  • Dover JW (1991) The Conservation of insects on arable farmland. In: Collins NM, Thomas JA (eds) The conservation of insects and their habitats. Academic Press, London, pp 294–318

    Google Scholar 

  • Dover JW, Rowlingson B (2005) The western jewel butterfly (Hypochrysops halyaetus): factors affecting adult butterfly distribution within native Banksia bushland in an urban setting. Biol Conserv 122:599–609

    Article  Google Scholar 

  • Ebert G, Rennwald E (eds) (1991) Die Schmetterlinge Baden-Württembergs Band 1 Tagfalter 1, Ulmer, pp: 445ff–451, 552 pp

  • ESRI (1996) ArcView GIS 3.2 reference manual for window by ESRI. Environment Systems and Research Institute, New York Street, Redlands CA

  • Etheredge JA, Perez SM, Taylor OR, Jander R (1999) Monarch butterflies (Danaus plexippus L.) use a magnetic compass for navigation. PNAS 96:13845–13846

    Article  PubMed  CAS  Google Scholar 

  • Fischer K, Fiedler K (2001) Resource-based territoriality in the butterfly Lycaena hippothoe and environmentally induced behavioural shifts. Anim Behav 61:723–732

    Article  Google Scholar 

  • Fric Z, Konvicka M (2007) Dispersal kernels of butterflies: power-law functions are invariant to marking frequency. Basic Appl Ecol 8:377–386

    Article  Google Scholar 

  • Fric Z, Hula V, Klimova M, Zimmermann K, Konvicka M (2009) Dispersal of four fritillary butterflies within identical landscape. Ecol Res 25:543–552

    Article  Google Scholar 

  • Gibbs JP (2000) Wetland loss and biodiversity conservation. Conserv Biol 14:314–317

    Article  Google Scholar 

  • Haddad NM (1999) Corridor use predicted from behaviour at habitat boundaries. Am Nat 153:215–227

    Article  Google Scholar 

  • Haddad NM, Bowne DR, Cunninghamm A, Danielson BJ, Levey DJ, Sargent S, Spira T (2003) Corridor use by diverse taxa. Ecology 84:609–615

    Article  Google Scholar 

  • Hanski I (1998) Metapopulation dynamics. Nature 396:41–49

    Article  CAS  Google Scholar 

  • Hanski I (1999) Metapopulation ecology. Oxford University Press, Oxford

    Google Scholar 

  • Hanski I, Ovaskainen O (2003) Metapopulation theory for fragmented landscapes. Theor Popul Biol 64:119–127

    Article  PubMed  Google Scholar 

  • Hanski I, Stevnes PC, Ihalempiä P, Selonen V (2000) Home-range size, movements, and nest-site use in the Siberian flying squirrel, Pteromys volans. J Mammal 81:798–809

    Article  Google Scholar 

  • Hartig EK, Grozev O, Rosenzweig C (1997) Climate change, agricultural and wetlands in Eastern Europe: vulnerability, adaptation and policy. Clim Change 36:107–121

    Article  Google Scholar 

  • Hill JK, Thomas CD, Lewis OT (1996) Effects of habitat patch size and isolation on dispersal by Hesperia comma butterflies: implications for metapopulation structure. J Anim Ecol 65:725–735

    Article  Google Scholar 

  • Hölldobler B (1976) Recruitment behaviour, home range orientation and territoriality in harvester ants Pogonomyrmex. Behav Ecol Sociobiol 1:3–44

    Article  Google Scholar 

  • Hovestadt T, Nowicki P (2008) Investigating movement within irregularly shaped patches: analysis of mark–release–recapture data using randomisation procedures. Israel J Ecol Evol 54:137–154

    Article  Google Scholar 

  • Hovestadt T, Nowicki P, Binzenhöfer B, Settele J (2011) Do all inter-patch movements represent dispersal? A mixed kernel study of butterfly mobility in fragmented landscapes. J Anim Ecol 80:1070–1077

    Article  PubMed  Google Scholar 

  • Junker M, Schmitt T (2010) Demography, dispersal and movement pattern of Euphydryas aurina (Lepidoptera: Nymphalidae) at the Iberian Peninsula: an alarming example in an increasingly fragmented landscape? Insect Conserv 14:237–246

    Article  Google Scholar 

  • Junker M, Wagner S, Gros P, Schmitt T (2010) Changing demography and dispersal behaviour: ecological adaptation in an alpine butterfly. Oecologia 164:971–980

    Article  PubMed  Google Scholar 

  • Kudrna O, Harpke A, Lux K, Pennersdorfer J, Schweiger O, Settele J, Wiemers M (2011) Distribution atlas of butterflies in Europe. Gesellschaft für Schmetterlingsschutz, Halle

    Google Scholar 

  • Kuras T, Benes J, Fric Z, Konvicka M (2003) Dispersal patterns of endemic alpine butterflies with contrasting population structures: Erebia epiphron and E. sudetica. Popul Ecol 45:115–123

    Article  Google Scholar 

  • Lidicker WZ Jr (1975) The role of dispersal in the demography of small mammals. In: Golley FB, Perturusewicz K, Ryszkowski L (eds) Small mammals: their productivity and population dynamics. Cambridge University Press, London, pp 103–108

    Google Scholar 

  • Lurtz PWW, Garson PJ, Wauters LA (1997) Effects of temporal and spatial variation in habitat quality on red squirrel dispersal behaviour. Anim Behav 54:427–435

    Article  Google Scholar 

  • Mallet J (1986) Dispersal and gene flow in a butterfly with home range behaviour: Heliconius erato (Lepidoptera: Nymphalidae). Oecologia 68:210–217

    Article  Google Scholar 

  • Mittelstaedt H (1962) Control systems of orientation in insects. A Rev Entomol 7:177–198

    Article  Google Scholar 

  • Moore D, van Nest BN, Seier E (2011) Diminishing returns: the influence of experience and environment on time-memory extinction in honeybee foragers. J Comp Physiol A. doi:10.1007/s00359-011-0624-y

    Google Scholar 

  • Munguia ML, Martin J, Gracia-Barros E, Viejo JL (1997) Use of space and resources in a Mediterranean population of the butterfly Euphydryas aurinia. Acta Oecol 17:597–612

    Article  Google Scholar 

  • Öckinger E, Hammerstedt O, Nilsson SG, Smith HG (2006) The relationship between local extinctions of grassland butterflies and increased soil nitrogen levels. Biol Conserv 128:564–573

    Article  Google Scholar 

  • Parmesan C (1996) Climate and specie’s range. Nature 382:765–766

    Article  CAS  Google Scholar 

  • Poethke HJ, Hovestadt T (2002) Evolution of density and patch size dependent dispersal rates. Proc R Soc Lond B 269:637–645

    Article  Google Scholar 

  • R development core team (2009) R: a language and environment for statistical computing. Vienna, Austria. http://www.R-project.org. Accessed on 13 Nov 2010

  • Reed JM (1999) The role of behaviour in recent avian extinctions and endangerments. Conserv Biol 13:232–241

    Article  Google Scholar 

  • Root RB, Kareiva PM (1984) The search for resources by cabbage butterflies (Pieris rapae): ecological consequences and adaptive significance of Markovian movements in a patchy environment. Ecology 65:147–165

    Article  Google Scholar 

  • Schneider C, Dover J, Fry GLA (2003) Movement of two grassland butterflies in the same habitat network: the role of adult resources and size of the study area. Ecol Entomol 28:219–227

    Article  Google Scholar 

  • Schtickzelle N, Baguette M (2003) Behavioural responses to habitat patch boundaries restricts dispersal and generates emigration-patch area relationships in fragmented landscapes. J Anim Ecol 72:533–545

    Article  Google Scholar 

  • Settele J, Feldmann R, Reinhardt R (1999a) Die Tagfalter Deutschlands—Ein Handbuch für Freilandökologen, Umweltplaner und Naturschützer. Ulmer, Stuttgart, p 452

  • Settele J, Feldmann R, Henle K, Kockelke K, Poethke HJ (1999b) Methoden der quantitativen Erfassung von Tagfaltern. In: Settele J, Feldmann R, Reinhardt R (eds) Die Tagfalter Deutschlands. Ulmer, Stuttgart, pp 144–186, p 452

  • Shier DM (2006) Effect of family support on the success of translocated black-tailed prairie dogs. Conserv Biol 20:1780–1790

    Article  PubMed  CAS  Google Scholar 

  • Shreeve TG, Dennis RLH (2011) Landscape scale conservation: resources, behaviour, the matrix and opportunities. J Insect Conserv 15:179–188

    Article  Google Scholar 

  • Stevens VM, Turlure C, Baguette M (2010) A meta-analysis of dispersal in butterflies. Biol Rev 85:625–642

    PubMed  Google Scholar 

  • Strier KB (1997) Behavioural ecology and conservation biology of primates and other animals. Adv Stud Behav 26:101–158

    Google Scholar 

  • Sutherland WJ (1998) The importance of behavioural studies in conservation biology. Anim Behav 56:801–809

    Article  PubMed  Google Scholar 

  • Sutherland WJ, Dolman PM (1994) Combining behaviour and population dynamics with applications for predicting consequences of habitat loss. Proc R Soc Lond B 255:955–963

    Article  Google Scholar 

  • Tolman T, Levington R (1998) Die Tagfalter Europas und Nordwestafrikas. Kosmos Verlags-GmbH & Co-Stuttgart, 319 pp

  • Trakhtenbrot A, Nathan R, Perry G, Richardson DM (2005) The importance of long-distance dispersal in biodiversity conservation. Divers Distrib 11:173–181

    Article  Google Scholar 

  • Turner JRG (1971) Experiments on the demography of tropical butterflies. II. Longevity and home-range behaviour in Heliconius. Biotropica 3:21–31

    Article  Google Scholar 

  • van Dyck H, Baguette M (2005) Dispersal behaviour in fragmented landscapes: routine or special movements? Basic Appl Ecol 6:535–545

    Article  Google Scholar 

  • Van Swaay C, Cuttelod A, Collins S, Maes D, Lopez M, Munguira M, Šašić M, Settele J, Verovnik R, Verstrael T, Warren M, Wiemers M, Wynhof I (2010) European red list of butterflies. Publications Office of the European Union, Luxembourg

    Google Scholar 

  • Wahlberg N, Klemetti T, Hanski I (2002) Dynamic populations in a dynamic landscape: the metapopulation structure of the marsh fritillary butterfly. Ecography 25:224–232

    Article  Google Scholar 

  • Wolff JO, Lidicker WZ Jr (1980) Population ecology of the taiga vole, Microtus xanthognathus, in interior Alaska. Can Zool 58:1800–1812

    Article  Google Scholar 

  • Worton BJ (1989) Kernel methods for estimating the utilization distribution in home-range studies. Ecology 70:164–168

    Article  Google Scholar 

  • Zimmermann K, Fric Z, Filipová L, Konvicka M (2005) Adult demography, dispersal and behaviour of Brenthis ino (Lepidoptera: Nymphalidae): how to be a successful wetland butterfly. Eur J Entomol 102:699–706

    Google Scholar 

Download references

Acknowledgments

We acknowledge the “Forschungsinitiative Rheinland-Pfalz” for financing the employment of Jessica Weyer and the DFG graduate school “Verbesserung von Normsetzung und Normanwendung im integrierten Umweltschutz durch rechts- und naturwissenschaftliche Kooperation” (No. 1319) Trier University for scientific support. We are grateful to Dr. Ortwin Elle for advice and support in the GIS analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jessica Weyer.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 48 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weyer, J., Schmitt, T. Knowing the way home: strong philopatry of a highly mobile insect species, Brenthis ino . J Insect Conserv 17, 1197–1208 (2013). https://doi.org/10.1007/s10841-013-9601-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10841-013-9601-9

Keywords

Navigation