Skip to main content
Log in

Observer-based Geometric Impedance Control of a Fully-Actuated Hexarotor for Physical Sliding Interaction with Unknown Generic Surfaces

  • Regular Paper
  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

Aerial physical interaction is a promising field for unmanned aerial vehicles in future applications. This paper presents a novel paradigm for automatic aerial contact-based sliding interaction (inspection/cleaning) tasks in aerial robotics allowing a 3D force with a constant norm to be applied on generic surfaces with unknown geometry. The interaction task is achieved by a fully-actuated hexarotor equipped with a rigidly attached end-effector under a passivity-based geometric impedance controller and a new sliding-mode extended state observer to estimate the interaction wrench. In order to increase the observer performance and reduce the estimation chattering phenomenon, the observer is innovatively incorporated with a super-twisting algorithm and a sigmoid function with a switching gain being adaptively updated by a fuzzy logic system. A detailed stability analysis for the observer is presented based on the Lyapunov stability theory. The proposed control approach is validated in several simulations in which we try to accomplish the aerial physical sliding interaction task with different types of objects under various sliding speeds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

The detailed information of the raw data bags (rosbag) for all the plotted figures in this paper can be found from the attached document. And the video for intuitively showing the results of aerial sliding interaction on more types of surfaces can be found from https://youtu.be/xt54yZIZ8T4

References

  1. Cataldi, E., Muscio, G., Trujillo, M.A., Rodríguez, Y., Pierri, F., Antonelli, G., Caccavale, F., Viguria, A., Chiaverini, S., Ollero, A.: Impedance control of an aerial-manipulator: Preliminary results. In: 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 3848–3853. IEEE (2016)

  2. Chen, W.H., Ballance, D.J., Gawthrop, P.J., O’Reilly, J.: A nonlinear disturbance observer for robotic manipulators. IEEE Trans. Ind. Electron. 47(4), 932–938 (2000)

    Article  Google Scholar 

  3. Furrer, F., Burri, M., Achtelik, M., Siegwart, R.: Rotors—a modular gazebo mav simulator framework. In: Robot Operating System (ROS), pp. 595–625. Springer (2016)

  4. Gioioso, G., Ryll, M., Prattichizzo, D., Bülthoff, H.H., Franchi, A.: Turning a near-hovering controlled quadrotor into a 3d force effector. In: 2014 IEEE International Conference on Robotics and Automation (ICRA), pp. 6278–6284. IEEE (2014)

  5. Hamaza, S., Georgilas, I., Richardson, T.: Towards an adaptive-compliance aerial manipulator for contact-based interaction. In: 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 1–9. IEEE (2018)

  6. Jiao, R., Chou, W., Ding, R., Dong, M.: Adaptive robust control of quadrotor with a 2-degree-of-freedom robotic arm. Adv. Mech. Eng. 10(8), 1687814018778639 (2018)

    Article  Google Scholar 

  7. Kamel, M., Verling, S., Elkhatib, O., Sprecher, C., Wulkop, P., Taylor, Z., Siegwart, R., Gilitschenski, I.: The voliro omniorientational hexacopter: An agile and maneuverable tiltable-rotor aerial vehicle. IEEE Robot. Autom. Mag. 25(4), 34–44 (2018)

    Article  Google Scholar 

  8. Kim, S., Choi, S., Kim, H., Shin, J., Shim, H., Kim, H.J.: Robust control of an equipment-added multirotor using disturbance observer. IEEE Trans. Control Syst. Technol. 26(4), 1524–1531 (2017)

    Google Scholar 

  9. Koenig, N., Howard, A.: Design and use paradigms for gazebo, an open-source multi-robot simulator. In: 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)(IEEE Cat. No. 04CH37566), vol. 3, pp 2149–2154. IEEE (2004)

  10. Meier, L., Honegger, D., Pollefeys, M.: Px4: A node-based multithreaded open source robotics framework for deeply embedded platforms. In: 2015 IEEE International Conference on Robotics and Automation (ICRA), pp. 6235–6240. IEEE (2015)

  11. Palm, R.: Robust control by fuzzy sliding mode. Automatica 30(9), 1429–1437 (1994)

    Article  MathSciNet  Google Scholar 

  12. Park, S., Lee, J., Ahn, J., Kim, M., Her, J., Yang, G.H., Lee, D.: Odar: Aerial manipulation platform enabling omnidirectional wrench generation. IEEE/ASME Trans Mechatron 23(4), 1907–1918 (2018)

    Article  Google Scholar 

  13. Quigley, M., Conley, K., Gerkey, B., Faust, J., Foote, T., Leibs, J., Wheeler, R., Ng, A.Y.: Ros: an open-source robot operating system. In: ICRA Workshop on Open Source Software. Kobe, Japan, vol. 3, p 5 (2009)

  14. Rajappa, S., Bülthoff, H., Stegagno, P.: Design and implementation of a novel architecture for physical human-uav interaction. The Int. J. Robot. Res. 36(5-7), 800–819 (2017)

    Article  Google Scholar 

  15. Rashad, R., Bicego, D., Jiao, R., Sanchez-Escalonilla, S., Stramigioli, S.: Towards vision-based impedance control for the contact inspection of unknown generically-shaped surfaces with a fully-actuated uav. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE (Accepted) (2020)

  16. Rashad, R., Califano, F., Stramigioli, S.: Port-hamiltonian passivity-based control on se (3) of a fully actuated uav for aerial physical interaction near-hovering. IEEE Robot. Autom. Lett. 4(4), 4378–4385 (2019)

    Article  Google Scholar 

  17. Rashad, R., Engelen, J.B., Stramigioli, S.: Energy tank-based wrench/impedance control of a fully-actuated hexarotor: A geometric port-hamiltonian approach. In: 2019 International Conference on Robotics and Automation (ICRA), pp. 6418–6424. IEEE (2019)

  18. Rong, Y., Jiao, R., Kang, S., Chou, W.: Sigmoid super-twisting extended state observer and sliding mode controller for quadrotor uav attitude system with unknown disturbance. In: 2019 IEEE International Conference on Robotics and Biomimetics (ROBIO), pp. 2647–2653. IEEE (2019)

  19. Ryll, M., Muscio, G., Pierri, F., Cataldi, E., Antonelli, G., Caccavale, F., Bicego, D.: Franchi, A.: 6d interaction control with aerial robots: The flying end-effector paradigm. The International Journal of Robotics Research 38(9), 1045–1062 (2019)

    Article  Google Scholar 

  20. Ryll, M., Muscio, G., Pierri, F., Cataldi, E., Antonelli, G., Caccavale, F.: Franchi, A.: 6d physical interaction with a fully actuated aerial robot. In: 2017 IEEE International Conference on Robotics and Automation (ICRA), pp. 5190–5195. IEEE (2017)

  21. Salaan, C.J., Tadakuma, K., Okada, Y., Takane, E., Ohno, K., Tadokoro, S.: Uav with two passive rotating hemispherical shells for physical interaction and power tethering in a complex environment. In: 2017 IEEE International Conference on Robotics and Automation (ICRA), pp. 3305–3312. IEEE (2017)

  22. Seo, H., Kim, S., Kim, H.J.: Aerial grasping of cylindrical object using visual servoing based on stochastic model predictive control. In: 2017 IEEE international conference on Robotics and Automation (ICRA), pp. 6362–6368. IEEE (2017)

  23. Shi, D., Wu, Z., Chou, W.: Super-twisting extended state observer and sliding mode controller for quadrotor uav attitude system in presence of wind gust and actuator faults. Electronics 7(8), 128 (2018)

    Article  Google Scholar 

  24. Yüksel, B., Secchi, C., Bülthoff, H.H., Franchi, A.: A nonlinear force observer for quadrotors and application to physical interactive tasks. In: 2014 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, pp. 433–440. IEEE (2014)

  25. Yüksel, B., Secchi, C., Bülthoff, H. H., Franchi, A.: Reshaping the physical properties of a quadrotor through ida-pbc and its application to aerial physical interaction. In: 2014 IEEE International Conference on Robotics and Automation (ICRA), pp. 6258–6265. IEEE (2014)

  26. Yüksel, B., Secchi, C., Bülthoff, H.H., Franchi, A.: Aerial physical interaction via ida-pbc. Int. J. Robot. Res. 38(4), 403–421 (2019)

    Article  Google Scholar 

Download references

Funding

This work was funded by National Key R&D Program of China under grant number 2019YFB1310802 and the cooperation program “INTERREG Deutschland-Nederland” as part of the SPECTORS project number 143081.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: Ran Jiao; Methodology: Ran Jiao, Ramy Rashad, Davide Bicego; Formal analysis and investigation: Ran Jiao, Davide Bicego; Writing - original draft preparation: Ran Jiao; Writing - review and editing: Ran Jiao, Davide Bicego, Ramy Rashad, Wusheng Chou, Stefano Stramigioli; Funding acquisition: Wusheng Chou, Stefano Stramigioli; Resources: Ramy Rashad, Stefano Stramigioli; Supervision: Stefano Stramigioli, Wusheng Chou.

Corresponding author

Correspondence to Ran Jiao.

Ethics declarations

Conflict of Interests

The authors declare no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

(MP4 31.0 MB)

Appendix

Appendix

In this appendix, the proof of Theorem 1 is provided.

Firstly, we consider the error dynamics of FASSTESO by,

$$ \left\{ {\begin{array}{*{20}{c}} \dot{\tilde{\xi}}_{1}= {\tilde{\xi} }_{2} - {\alpha_{1}}{{({{\tilde{\xi} }_{1}})}^{\frac{1}{2}}}sign({{\tilde{\xi} }_{1}})\\ {}{{\dot{\tilde{\xi} }_{2}} = \delta - {\bar{\alpha }_{2}}sig({{\tilde{\xi} }_{1}})} \end{array}} \right. $$
(21)

where \({\bar {\alpha }_{2}}{\text { = }}({\mu _{1}} + {\mu _{2}}{K_{f}}){\alpha _{2}}\) is defined for proof simplification. Meanwhile we introduce a new vector \(\boldsymbol {\zeta } = {[\begin {array}{*{20}{c}} {{\zeta _{1}}}&{{\zeta _{2}}} \end {array}]^{T}}\in {\mathbb {R}^{2}}\), in which \({\zeta _{1}} = {{\left | {{{\tilde {\xi } }_{1}}} \right |}^{\frac {1}{2}}}sign({{\tilde {\xi } }_{1}}),{\zeta _{2}} = {{\tilde {\xi } }_{2}}\).

Choose the positive definite Lyapunov function V as,

$$ V = {\boldsymbol{\zeta}^{T}}\boldsymbol{{\varLambda}} \boldsymbol{\zeta} $$
(22)

where \(\boldsymbol {{\varLambda }} {\text { = }}\left [ {\begin {array}{*{20}{c}} {{\alpha _{1}}^{2} + 1}&{ - {\alpha _{1}}}\\ { - {\alpha _{1}}}&1 \end {array}} \right ]\in {\mathbb {R}^{2 \times 2}}\) is a positive definite matrix.

Take time derivative of V we can obtain,

$$ \begin{array}{lll} \dot{V} &=& 2{\boldsymbol{\zeta}^{T}}\boldsymbol{{\varLambda}} \dot{\boldsymbol{\zeta}} \\ &=&2({\alpha_{1}}^{2} + 1){\zeta_{1}}{\dot{\zeta }_{1}} - 2{\alpha_{1}}{\dot{\zeta }_{1}}{\zeta_{2}} + 2{\dot{\zeta }_{2}}({\zeta_{2}} - {\alpha_{1}}{\zeta_{1}}) \end{array} $$
(23)
$$ \left\{ {\begin{array}{*{20}{c}} {}{{\zeta_{1}} = {{\left| {{{\tilde{\xi} }_{1}}} \right|}^{\frac{1}{2}}}sign({{\tilde{\xi} }_{1}})}\\ {}{{\zeta_{2}} = {{\tilde{\xi} }_{2}}}\\ {{\dot{\zeta }_{1}} = \frac{1}{2}{{\left| {{{\tilde{\xi} }_{1}}} \right|}^{- \frac{1}{2}}}(- {\alpha_{1}}{{\left| {{{\tilde{\xi} }_{1}}} \right|}^{\frac{1}{2}}}sign({{\tilde{\xi} }_{1}}) + {{\tilde{\xi} }_{2}})}\\ {}{{\dot{\zeta }_{2}} = \delta - {\bar{\alpha }_{2}}sig({{\tilde{\xi} }_{1}})} \end{array}} \right. $$
(24)

By combining (24), then (23) could be rewritten as,

$$ \dot V = \mathrm{M} + 2{\bar{\alpha }_{2}}{{\tilde{\xi} }_{2}}(sign({{\tilde{\xi} }_{1}}) - sig({{\tilde{\xi} }_{1}})) + 2{\alpha_{1}}{\bar{\alpha }_{2}}sig({{\tilde{\xi} }_{1}}){\left| {{{\tilde{\xi} }_{1}}} \right|^{\frac{1}{2}}}sign({{\tilde{\xi} }_{1}}) $$
(25)

where

$$ \begin{array}{l} \mathrm{M}{\text{ = }} - ({\alpha_{1}}^{2} + 1){\alpha_{1}}{\left| {{{\tilde{\xi} }_{1}}} \right|^{\frac{1}{2}}} + ({\alpha_{1}}^{2} + 1 - 2{\bar{\alpha }_{2}}){{\tilde{\xi} }_{2}}sign({{\tilde{\xi} }_{1}})\\ {\kern20pt}- 2{\alpha_{1}}(\frac{1}{2}{\left| {{{\tilde{\xi} }_{1}}} \right|^{- \frac{1}{2}}}(- {\alpha_{1}}{\left| {{{\tilde{\xi} }_{1}}} \right|^{\frac{1}{2}}}sign({{\tilde{\xi} }_{1}}) + {{\tilde{\xi} }_{2}})){{\tilde{\xi} }_{2}}\\ {\kern19pt}+ 2\delta ({{\tilde{\xi} }_{2}} - {\alpha_{1}}{\left| {{{\tilde{\xi} }_{1}}} \right|^{\frac{1}{2}}}sign({{\tilde{\xi} }_{1}})) \end{array} $$
(26)
$$ \left\{ {\begin{array}{*{20}{c}} {sign({{\tilde{\xi} }_{1}}) - sig({{\tilde{\xi} }_{1}}) \le \left| {sign({{\tilde{\xi} }_{1}}) - \frac{{1 - {e^{- \beta {{\tilde{\xi} }_{1}}}}}}{{1 + {e^{- \beta {{\tilde{\xi} }_{1}}}}}}} \right| \le {\beta^{- \frac{1}{2}}}{{\left| {{{\tilde{\xi} }_{1}}} \right|}^{- \frac{1}{2}}}}\\ {}{sig({{\tilde{\xi} }_{1}})sign({{\tilde{\xi} }_{1}}) \le 1} \end{array}} \right. $$
(27)

By employing inequality (27), Eq. 25 can be reconstructed as,

$$ \dot{V} \le \mathrm{M} + 2{\bar{\alpha }_{2}}{\beta^{- \frac{1}{2}}}{{\tilde{\xi} }_{2}}{\left| {{{\tilde{\xi} }_{1}}} \right|^{- \frac{1}{2}}} + 2{\alpha_{1}}{\bar{\alpha }_{2}}{\left| {{{\tilde{\xi} }_{1}}} \right|^{\frac{1}{2}}} $$
(28)
$$ {{{\tilde{\xi} }_{2}} \le \left| {{{\tilde{\xi} }_{2}}} \right| \le {{\tilde{\xi} }_{2}}^{2} + \frac{1}{4}} $$
(29)

By help of inequality (29), Eq. 28 can be rewritten as,

$$ \begin{array}{l} \dot{V} \le \mathrm{M} + 2{\bar{\alpha }_{2}}{\beta^{- \frac{1}{2}}}{\left| {{{\tilde{\xi} }_{1}}} \right|^{- \frac{1}{2}}}({{\tilde{\xi} }_{2}}^{2} + \frac{1}{4}) + 2{\alpha_{1}}{\bar{\alpha }_{2}}{\left| {{{\tilde{\xi} }_{1}}} \right|^{\frac{1}{2}}}\\ {\kern8pt}= - {\left| {{{\tilde{\xi} }_{1}}} \right|^{- \frac{1}{2}}}(- {\left| {{{\tilde{\xi} }_{1}}} \right|^{\frac{1}{2}}}\mathrm{M} - 2{\bar{\alpha }_{2}}{\beta^{- \frac{1}{2}}}{{\tilde{\xi} }_{2}}^{2} - 2{\alpha_{1}}{\bar{\alpha }_{2}}\left| {{{\tilde{\xi} }_{1}}} \right| \\{\kern20pt}- \frac{1}{2}{\bar{\alpha }_{2}}{\beta^{- \frac{1}{2}}}) \end{array} $$
(30)
$$ {\zeta_{1}}{\zeta_{2}} \le \left| {{\zeta_{1}}} \right|\left| {{\zeta_{2}}} \right| \le \frac{1}{2}{\zeta_{1}}^{2} + \frac{1}{2}{\zeta_{2}}^{2} $$
(31)

According to inequality (31), Eq. 30 could be reconstructed as,

$$ \begin{array}{l} \dot{V} \le - {\left| {{{\tilde{\xi} }_{1}}} \right|^{- \frac{1}{2}}}({\vartheta_{1}}{\zeta_{1}}^{2} + {\vartheta_{2}}{\zeta_{2}}^{2} + {\vartheta_{3}}{\zeta_{1}}{\zeta_{2}} - \frac{1}{2}{\bar{\alpha }_{2}}{\beta^{- \frac{1}{2}}})\\ {\kern8pt}= - {\left| {{{\tilde{\xi} }_{1}}} \right|^{- \frac{1}{2}}}(\boldsymbol{{\zeta^{T}} {\varXi} \zeta} - \frac{1}{2}{\bar{\alpha }_{2}}{\beta^{- \frac{1}{2}}}) \end{array} $$
(32)

where

$$ \left\{ \begin{array}{l} \begin{array}{*{20}{c}} {{\vartheta_{1}} = {\alpha_{1}}^{3} - 2{\alpha_{1}}{\bar{\alpha }_{2}} - 2\delta {\alpha_{1}} + {\alpha_{1}} - \delta }\\ {}{{\vartheta_{2}} = - 2{\bar{\alpha }_{2}}{\beta^{- \frac{1}{2}}} + {\alpha_{1}} - \delta }\\ {}{{\vartheta_{3}} = 2{\bar{\alpha }_{2}} - 2{\alpha_{1}}^{2} - 1} \end{array}\\ {\kern4pt}\boldsymbol{{\varXi}} = \left[ {\begin{array}{*{20}{c}} {{\vartheta_{1}}}&{{\vartheta_{3}}/2}\\ {{\vartheta_{3}}/2}&{{\vartheta_{2}}} \end{array}} \right] \end{array} \right. $$
(33)

where several parameters should be adjusted to make \(\boldsymbol {{\varXi }}\in {\mathbb {R}^{2 \times 2}}\) a positive definite matrix. In that case, we could obtain,

$$ \begin{array}{*{20}{l}} {\dot{V} \le - {\left| {{{\tilde{\xi} }_{1}}} \right|^{- \frac{1}{2}}}(\boldsymbol{{\zeta^{T}} {\varXi} \zeta} - \frac{1}{2}{\bar{\alpha }_{2}}{\beta^{- \frac{1}{2}}})}\\ {\kern11pt}{ \le - {\left| {{{\tilde{\xi} }_{1}}} \right|^{- \frac{1}{2}}}({\lambda_{\min }}(\boldsymbol{{\varXi}} ){{\left\| \boldsymbol{\zeta} \right\|}^{2}} - \frac{{({\mu_{1}} + {\mu_{2}}{K_{f}}){\alpha_{2}}}}{{2\sqrt \beta }})} \end{array} $$
(34)

where \({\lambda _{{\min \limits } }}(\boldsymbol {{\varXi }} )\) is the minimum eigenvalue of the positive definite matrix Ξ. Then we can get that \(\dot {V} \le 0\) when \({\left \| \boldsymbol {\zeta } \right \|^{2}} \ge \frac {{({\mu _{1}} + {\mu _{2}}{K_{f}}){\alpha _{2}}}}{{2{\lambda _{{\min \limits } }}(\boldsymbol {{\varXi }} )\sqrt \beta }}\). Therefore, the upper bound of the estimated error \(\left \| \boldsymbol {\zeta } \right \|\) would be constrained by the bounded ball \({\boldsymbol {B_{\zeta }} } = \left \{ {\left . \boldsymbol {\zeta } \right |{{\left \| \boldsymbol {\zeta } \right \|}^{2}} \le \frac {{({\mu _{1}} + {\mu _{2}}{K_{f}}){\alpha _{2}}}}{{2{\lambda _{{\min \limits } }}(\boldsymbol {{\varXi }} )\sqrt \beta }}} \right \}\).

As for the parameter selection, to make Ξ positive definite, according to Eq. 33, we can get,

$$ \left\{ {\begin{array}{*{20}{c}} {{\vartheta_{1}} > 0}\\ {{\vartheta_{1}}{\vartheta_{2}} - {\vartheta_{3}}^{2}/4 > 0} \end{array}} \right. $$
(35)

when conducting a real aerial interaction, once α1, α2, μ1, μ2 are initially selected, in addition to \(\delta \in \left [ {\begin {array}{*{20}{c}} { - {\delta ^ + }}&{{\delta ^ + }} \end {array}} \right ]\), according to Eq. 35, we can obtain a range which is used to constrain the fuzzy logic output Kf to guarantee the convergence of the whole system.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiao, R., Rashad, R., Bicego, D. et al. Observer-based Geometric Impedance Control of a Fully-Actuated Hexarotor for Physical Sliding Interaction with Unknown Generic Surfaces. J Intell Robot Syst 102, 74 (2021). https://doi.org/10.1007/s10846-021-01434-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10846-021-01434-x

Keywords

Navigation