Skip to main content
Log in

Keratins extracted from Merino wool and Brown Alpaca fibres as potential fillers for PLLA-based biocomposites

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

This paper reports on the promising perspectives of using keratins extracted by sulphitolysis reaction from Merino wool (KM) and Brown Alpaca fibres (KA) in poly (l-lactide) (PLLA)-based biomaterials. Both types of keratin were dispersed in chloroform (CHCl3) and tetrahydrofuran (THF), and optimisation of dispersion methods and parameters using the two selected solvents was considered. The extraction yield, as well as supermolecular structures, morphology and thermal behaviour of the two proteins before and after the regeneration in CHCl3 was investigated. The results indicated that the supermolecular structures and thermal behaviour of the two proteins were affected by the interaction with CHCl3, producing decrease of the amount of α-helix structures in KM and an increase for KA, a slight decrease of β-sheet structures and a reduced thermal stability of α-crystallites for both keratins. Biocomposite films based on PLLA polymer matrix and two different contents of Merino wool and Brown Alpaca keratins (1 % and 5 % wt) were successfully developed by solvent casting in chloroform and the resulting morphologies after incorporation of different keratins (as a function of content and source) give evidence of different surface topographies, with a random distribution of keratin in flask-like structure. PLLA/5KA and PLLA/5KM samples with 1 % and 5 % wt of keratins show a specific pore-like surface microstructure, induced by solvent evaporation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Dowling LM, Crewther WG, Parry DAD (1986) Secondary structure of component 8c-1 of a-keratin: analysis of the amino acid sequence. Biochem J 236(3):705–712

    Google Scholar 

  2. Lv L, Yu Y, Zhou J (2010) Establishment of data base of evaluation system on recycling of waste textile fiber material. Tekstil 59(5):201–207

    Google Scholar 

  3. Barone JR (2009) Lignocellulosic fibre-reinforced Keratin polymer composites. J Polym Environ 17(2):143–151

    Article  Google Scholar 

  4. Li J, Li Y, Li L, Mak AFT, Ko F, Qin L (2009) Fabrication and degradation of poly (l-lactic acid) scaffolds with wool keratin. Compos B 40:664–667

    Article  Google Scholar 

  5. Williams GI, Wool RP (2000) Composites from natural fibers and soy oil resins. Appl Compos Mater 7:421–432

    Article  Google Scholar 

  6. Thielemans W, Can E, Morye SS, Wool RP (2002) Novel applications of lignin in composite materials. J Appl Polym Sci 83(2):323–331

    Article  Google Scholar 

  7. Gupta AP, Kumar V (2007) New emerging trends in synthetic biodegradable polymers–Polylactide: a critique. Eur Polym J 43(10):4053–4074

    Article  Google Scholar 

  8. Cai Q, Yang JA, Bei JZ, Wang SG (2002) A novel porous cells scaffold made of polylactide-dextran blend by combining phase-separation and particle-leaching techniques. Biomaterials 23(23):4483–4492

    Article  Google Scholar 

  9. Armentano I, Bitinis N, Fortunati E, Mattioli S, Rescignano N, Verdejo R, Lopez-Manchado MA, Kenny JM (2013) Multifunctional nanostructured PLA materials for packaging and tissue engineering. Prog Polym Sci 38(10–11):1720–1747

    Article  Google Scholar 

  10. Suh H, Hwang YS, Lee JE, Han CD, Park JC (2001) Behavior of osteoblasts on a type I atelocollagen grafted ozone oxidized poly-l-lactic acid membrane. Biomaterials 22(2):219–230

    Article  Google Scholar 

  11. Quirk AR, Chan WC, Davis MC, Tendler SJB, Shakesheff KM (2001) Poly (l-lysine)–GRGDS as a biomimetic surface modifier for poly (lactic acid). Biomaterials 22:865–867

    Article  Google Scholar 

  12. Li JS, Mak AFT (2007) Transfer of collagen coating from progen to scaffold: collagen coating within poly (DL-lactic-co-glycolic acid) scaffold. Compos B 38:317–323

    Article  Google Scholar 

  13. Zhu H, Feng X, Zhang H, Guo Y, Zhang J, Chen J (2009) Structural characteristics and properties of silk fibroin/poly (lactic acid) blend films. J Biomater Sci Polym Ed 20(9):1259–1274

    Article  Google Scholar 

  14. Li JS, Li Y, Liu X, Zhang J, Zhang Y (2013) Strategy to introduce an hydroxyapatite-keratin nanocomposite into a fibrous membrane for bone tissue engineering. J Mater Chem B 1:432–437

    Article  Google Scholar 

  15. Kim BS, Park KE, Parkand WH, Lee J (2013) Fabrication of nanofibrous scaffold using a PLA and hagfish thread keratin composite; its effect on cell adherence, growth, and osteoblast differentiation. Biomed Mater. doi:10.1088/1748-6041/8/4/045006

    Google Scholar 

  16. Rouse JG, Van Dyke M (2010) A review of keratin-based biomaterials for biomedical applications. Materials 3:999–1014

    Article  Google Scholar 

  17. Kirsner RS, Cassidy S, Marsh C, Vivas A, Kelly RJ (2012) Use of a keratin-based wound dressing in the management of wounds in a patient with recessive dystrophic epidermolysis bullosa Adv. Skin Wound Care 25:400–403

    Article  Google Scholar 

  18. Reichl S (2009) Films based on human hair keratin as substrates for cell culture and tissue engineering. Biomaterials 30:6854–6866

    Article  Google Scholar 

  19. Tachibana A, Furuta Y, Takeshima H, Tanabe T, Yamauchi K (2002) Fabrication of wool keratin sponge scaffolds for long-term cell cultivation. J Biotechnol 93:165–170

    Article  Google Scholar 

  20. Aluigi A, Tonetti C, Tonin C, Casasola R, Ferrero F (2012) Wool keratin nanofibres for copper (II) adsorption. J Biobased Mater Bio 6:230–236

    Article  Google Scholar 

  21. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  Google Scholar 

  22. Aluigi A, Zoccola M, Vineis C, Tonin C, Ferrero F, Canetti M (2007) Study on the structure and properties of wool keratin regenerated from formic acid. Int J Biol Macromol 41(3):266–273

    Article  Google Scholar 

  23. Wang H, Liu X, Wang X (2005) Internal structure and pigment granules in colored Alpaca fibres. Fibres and Polymers 6(3):263–268

    Article  Google Scholar 

  24. Cardamone JM, Nuñez A, Garcia RA, Aldema-Ramos M (2009) Characterizing wool keratin. Lett Mater Sci. doi:10.1155/2009/147175

    Google Scholar 

  25. Cardamone JM (2010) Investigating the microstructure of keratin extracted from wool: peptide sequence (MALDI-TOF/TOF) and protein conformation (FTIR). J Mol Struct 969:97–105

    Article  Google Scholar 

  26. Leertouwer HL, Wilts BD, Stavenga DG (2011) Refractive index and dispersion of butterfly scale chitin and bird feather keratin measured by interference microscopy. Opt Express 19:24061–24066

    Article  Google Scholar 

  27. Zoccola M, Aluigi A, Tonin C (2009) Characterisation of keratin biomass from butchery and wool industry wastes. J Mol Struct 938:35–40

    Article  Google Scholar 

  28. Kreplak L, Doucet J, Dumas P, Briki F (2004) New aspect of the α-helix to β-sheet transition in stretched hard α-keratin fibers. Biophys J 87:640–647

    Article  Google Scholar 

  29. Erra P, Gomez N, Dolcet LM, Juliá MR, Lewis DM, Willoughby JH (1997) FTIR analysis to study chemical changes in wool following a sulfitolysis treatment. Text Res J 67(6):397–401

    Google Scholar 

  30. Wetzel DL, Srivan P, Finney JR (2003) Revealing protein infrared spectral detail in a heterogeneous matrix dominated by starch. Vib Spectrosc 31:109–114

    Article  Google Scholar 

  31. Pelton JT, McLean LR (2000) Spectroscopic Methods for Analysis of Protein Secondary Structure. Anal Biochem 277:167–176

    Article  Google Scholar 

  32. Vasconcelos A, Freddi G, Cavaco-Paulo A (2008) Biodegradable materials based on silk fibroin and keratin. Biomacromolecules 9:1299–1305

    Article  Google Scholar 

  33. Schmidt WF, Jayasundera S (2003) “Microcrystalline Keratin Fiber,”. In: Wallenberger F, Weston N (eds) Natural fibers plastics and composites–recent advances. Kluwer Academic Publishers, Norwell

    Google Scholar 

  34. Milczarek P, Zielinski M, Garcia ML (1992) The mechanism and stability of thermal transitions in hair keratin colloid. Polym Sci 270:1106–1115

    Google Scholar 

  35. Spei M, Holzem R (1987) Thermoanalytical investigations of extended and annealed keratins colloid. Polym Sci 265:965–970

    Google Scholar 

  36. El-Amoudy ES, Osman EM (2012) Thermal stability and fastness properties of wool fabric dyed with an ecofriendly natural dye “sambucus nigra” under the effect of different mordants. Elixir Appl Chem 44C:7080–7085

    Google Scholar 

  37. Wortmann FJ, Deutz H (1998) Thermal analysis of ortho- and para cortical cells isolated from wool fibres. J Appl Polym Sci 68:1991–1995

    Article  Google Scholar 

  38. Popescu C, Augustin P (1999) Effect of chlorination treatment on the thermogravimetric behavior of wool fibres. J Therm Anal Calorim 57:509–515

    Article  Google Scholar 

  39. Wang H, Liu X, Wang X (2005) Internal structure and pigment granules in colored alpaca fibers. Fibers polym 6(3):263–268

    Article  Google Scholar 

  40. Hills AWD (1968) The mechanism of the thermal decomposition of calcium carbonate. Chem Eng Sci 23(4):297–320

    Article  Google Scholar 

  41. Sahoo A, Soren NM. (2011) Nutrition for Wool Production. WebmedCentral Nutrition 2(10):WMC002384.

  42. Hatcher S, King AL, Millington KR (2011) Genetic variation in sulfur, calcium, magnesium, manganese and trace metal content of Merino wool and correlations with brightness, yellowness and photostability. Anim Prod Sci 52(7):463–470

    Google Scholar 

  43. Engler AJ, Sen S, Sweeney HL, Discher DE (2006) Matrix elasticity directs stem cell lineage Specification. Cell 126:677–689

    Article  Google Scholar 

  44. D’Angelo F, Armentano I, Cacciotti I, Quattrocelli M, Del Gaudio C, Fortunati E, Saino E, Tiribuzi R, Cerulli GG, Visai L, Kenny JM, Sampaolesi M, Bianco A, Martino S, Orlacchio A (2012) Tuning multi-/pluri-potent stem cell fate by electrospun poly (l-lactic acid)-calcium-deficient hydroxyapatite nanocomposite mats. Biomacromolecules 13:1350–1360

    Article  Google Scholar 

  45. Balaji S, Kumar R, Sripriya R, Rao U, Mandal A, Kakkar P, Reddy PN, Sehgal PK (2012) Characterization of keratin–collagen 3D scaffold for biomedical applications. Polym Adv Technol 23:500–507. doi:10.1002/pat.1905

    Article  Google Scholar 

Download references

Acknowledgement

The authors would like to acknowledge Gianni Berna of Società Agricola Maridiana, for the Alpaca fibre supply.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Puglia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aluigi, A., Tonetti, C., Rombaldoni, F. et al. Keratins extracted from Merino wool and Brown Alpaca fibres as potential fillers for PLLA-based biocomposites. J Mater Sci 49, 6257–6269 (2014). https://doi.org/10.1007/s10853-014-8350-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-014-8350-9

Keywords

Navigation