Skip to main content

Advertisement

Log in

MOF-derived carbon coating on self-supported ZnCo2O4–ZnO nanorod arrays as high-performance anode for lithium-ion batteries

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The C–ZnCo2O4–ZnO nanorod arrays (NRAs), which consist of MOF-derived carbon coating on ZnCo2O4–ZnO NRAs, are rational designed and synthesized via a facile template-based solution route on Ti foil and used as high-performance anode for lithium-ion batteries (LIBs). The uniform coated MOF-derived carbon layers on the ZnCo2O4–ZnO nanorods surface can serve as a conductive substrate as well as buffer layer to restrain volume expansion during charge–discharge process. When tested as anodes for LIBs, the C–ZnCo2O4–ZnO NRAs show high reversible capacity of 1318 mA h g−1 at 0.2 A g−1 after 150 charge–discharge cycles. Furthermore, C–ZnCo2O4–ZnO NRAs also exhibit brilliant rate performance of 886.2, 812.8, 732.2 and 580.6 mA h g−1 at 0.5, 1, 2 and 5 A g−1, respectively. The outstanding lithium storage performance of C–ZnCo2O4–ZnO NRAs could be ascribed to the stimulated kinetics of ion diffusion and electron transport originated from the shortened lithium-ion diffusion pathway and improved electronic conductivity benefit from uniformly coating MOF-derived carbon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Pan L, Zhao H, Shen W, Dong X, Xu J (2013) Surfactant-assisted synthesis of a Co3O4/reduced graphene oxide composite as a superior anode material for Li-ion batteries. J Mater Chem A 1:7159–7166. doi:10.1039/c3ta01498c

    Article  Google Scholar 

  2. Wang Y, Yan F, Liu SW et al (2013) Onion-like carbon matrix supported Co3O4 nanocomposites: a highly reversible anode material for lithium ion batteries with excellent cycling stability. J Mater Chem A 1:5212–5216. doi:10.1039/c3ta10559h

    Article  Google Scholar 

  3. Zhuo L, Wu Y, Ming J et al (2013) Facile synthesis of a Co3O4-carbon nanotube composite and its superior performance as an anode material for Li-ion batteries. J Mater Chem A 1:1141–1147. doi:10.1039/c2ta00284a

    Article  Google Scholar 

  4. Qiu Y, Yang S, Deng H, Jin L, Li W (2010) A novel nanostructured spinel ZnCo2O4 electrode material: morphology conserved transformation from a hexagonal shaped nanodisk precursor and application in lithium ion batteries. J Mater Chem 20:4439–4444. doi:10.1039/c0jm00101e

    Article  Google Scholar 

  5. Sun J, Li D, Xia Y et al (2015) Co3O4 nanoparticle embedded carbonaceous fibres: a nanoconfinement effect on enhanced lithium-ion storage. Chem Commun (Camb) 51:16267–16270. doi:10.1039/c5cc06160a

    Article  Google Scholar 

  6. Zhu Y, Cao C, Zhang J, Xu X (2015) Two-dimensional ultrathin ZnCo2O4 nanosheets: general formation and lithium storage application. J Mater Chem A 3:9556–9564. doi:10.1039/c5ta00808e

    Article  Google Scholar 

  7. Wang Y, Ke J, Zhang Y, Huang Y (2015) Microwave-assisted rapid synthesis of mesoporous nanostructured ZnCo2O4 anode materials for high-performance lithium-ion batteries. J Mater Chem A 3:24303–24308. doi:10.1039/c5ta06949a

    Article  Google Scholar 

  8. Sharma Y, Sharma N, Subba Rao GV, Chowdari BVR (2007) Nanophase ZnCo2O4 as a high performance anode material for Li-ion batteries. Adv Funct Mater 17:2855–2861. doi:10.1002/adfm.200600997

    Article  Google Scholar 

  9. Wu R, Qian X, Zhou K, Wei J, Lou J, Ajayan PM (2014) Porous spinel Zn x Co3−x O4 hollow polyhedra templated for high-rate lithium-ion batteries. Acs Nano 8:6297–6303. doi:10.1021/nn501783n

    Article  Google Scholar 

  10. Park HJ, Kim J, Choi NJ, Song H, Lee DS (2016) Nonstoichiometric Co-rich ZnCo2O4 hollow nanospheres for high performance formaldehyde detection at ppb levels. Acs Appl Mater Interfaces 8:3233–3240. doi:10.1021/acsami.5b10862

    Article  Google Scholar 

  11. Xu X, Cao K, Wang Y, Jiao L (2016) 3D hierarchical porous ZnO/ZnCo2O4 nanosheets as high-rate anode material for lithium-ion batteries. J Mater Chem A 4:6042–6047. doi:10.1039/c6ta00723f

    Article  Google Scholar 

  12. Liu B, Zhang J, Wang X et al (2012) Hierarchical three-dimensional ZnCo2O4 nanowire arrays/carbon cloth anodes for a novel class of high-performance flexible lithium-ion batteries. Nano Lett 12:3005–3011. doi:10.1021/nl300794f

    Article  Google Scholar 

  13. Luo W, Hu X, Sun Y, Huang Y (2012) Electrospun porous ZnCo2O4 nanotubes as a high-performance anode material for lithium-ion batteries. J Mater Chem 22:8916–8921. doi:10.1039/C2JM00094F

    Article  Google Scholar 

  14. Li Z, Yin L (2015) Sandwich-like reduced graphene oxide wrapped MOF-derived ZnCo2O4–ZnO–C on nickel foam as anodes for high performance lithium ion batteries. J Mater Chem A 3:21569–21577. doi:10.1039/c5ta05733g

    Article  Google Scholar 

  15. Cheng H, Lu ZG, Deng JQ, Chung CY, Zhang K, Li YY (2010) A facile method to improve the high rate capability of Co3O4 nanowire array electrodes. Nano Res. 3:895–901. doi:10.1007/s12274-010-0063-z

    Article  Google Scholar 

  16. Li Q, Lu XF, Xu H, Tong YX, Li GR (2014) Carbon/MnO(2) double-walled nanotube arrays with fast ion and electron transmission for high-performance supercapacitors. Acs Appl Mater Interfaces 6:2726–2733. doi:10.1021/am405271q

    Article  Google Scholar 

  17. Liu J, Song K, van Aken PA, Maier J, Yu Y (2014) Self-supported Li4Ti5O12–C nanotube arrays as high-rate and long-life anode materials for flexible Li-ion batteries. Nano Lett 14:2597–2603. doi:10.1021/nl5004174

    Article  Google Scholar 

  18. Feckl JM, Fominykh K, Döblinger M et al (2012) Nanoscale porous framework of lithium titanate for ultrafast lithium insertion. Angew Chem Int 51:7459–7463. doi:10.1002/anie.201201463

    Article  Google Scholar 

  19. Jung HG, Myung ST, Chong SY et al (2011) Microscale spherical carbon-coated Li4Ti5O12 as ultra high power anode material for lithium batteries. Energy Environ Sci 4:1345–1351. doi:10.1039/C0EE00620C

    Article  Google Scholar 

  20. Wang YQ, Gu L, Guo YG et al (2012) Rutile-TiO2 nanocoating for a high-rate Li4Ti5O12 anode of a lithium-ion battery. J Am Chem Soc 134:7874–7879. doi:10.1021/ja301266w

    Article  Google Scholar 

  21. Worrall SD, Bissett MA, Hirunpinyopas W, Attfield MP, Dryfe RAW (2016) Facile fabrication of metal–organic framework HKUST-1-based rewritable data storage devices. J Mater Chem C 4:8687–8695. doi:10.1039/c6tc03496a

    Article  Google Scholar 

  22. Quartarone E, Dall’Asta V, Resmini A et al (2016) Graphite-coated ZnO nanosheets as high-capacity, highly stable, and binder-free anodes for lithium-ion batteries. J Power Sources 320:314–321. doi:10.1016/j.jpowsour.2016.04.107

    Article  Google Scholar 

  23. Feng Y, Zou R, Xia D, Liu L, Wang X (2013) Tailoring CoO–ZnO nanorod and nanotube arrays for Li-ion battery anode materials. J Mater Chem A 1:9654–9658. doi:10.1039/c3ta11538k

    Article  Google Scholar 

  24. Yuan C, Wu HB, Xie Y, Lou XWD (2014) Mixed transition-metal oxides: design, synthesis, and energy-related applications. Angew Chem Int Ed 53:1488–1504. doi:10.1002/anie.201303971

    Article  Google Scholar 

  25. Geng H, Ang H, Ding X et al (2016) Metal coordination polymer derived mesoporous Co3O4 nanorods with uniform TiO2 coating as advanced anodes for lithium ion batteries. Nanoscale 8:2967–2973. doi:10.1039/c5nr08570e

    Article  Google Scholar 

  26. Zhang X, Chen H, Xie Y, Guo J (2014) Ultralong life lithium-ion battery anode with superior high-rate capability and excellent cyclic stability from mesoporous Fe2O3@TiO2 core–shell nanorods. J Mater Chem A 2:3912–3918. doi:10.1039/c3ta14317a

    Article  Google Scholar 

  27. Huang G, Zhang F, Zhang L, Du X, Wang J, Wang L (2014) Hierarchical NiFe2O4/Fe2O3 nanotubes derived from metal organic frameworks for superior lithium ion battery anodes. J Mater Chem A 2:8048–8053. doi:10.1039/c4ta00200h

    Article  Google Scholar 

  28. Zhang G, Hou S, Zhang H et al (2015) High-performance and ultra-stable lithium-ion batteries based on MOF-derived ZnO@ZnO quantum dots/C core–shell nanorod arrays on a carbon cloth anode. Adv Mater 27:2400–2405. doi:10.1002/adma.201405222

    Article  Google Scholar 

  29. Liu B, Shioyama H, Akita T, Xu Q (2008) Metal–organic framework as a template for porous carbon synthesis. J Am Chem Soc 130:5390–5391. doi:10.1021/ja7106146

    Article  Google Scholar 

  30. Chaikittisilp W, Ariga K, Yamauchi Y (2013) A new family of carbon materials: synthesis of MOF-derived nanoporous carbons and their promising applications. J Mater Chem A 1:14–19. doi:10.1039/c2ta00278g

    Article  Google Scholar 

  31. Zhong S, Zhan C, Cao D (2015) Zeolitic imidazolate framework-derived nitrogen-doped porous carbons as high performance supercapacitor electrode materials. Carbon 85:51–59. doi:10.1016/j.carbon.2014.12.064

    Article  Google Scholar 

  32. Cheng F, Li WC, Zhu JN, Zhang WP, Lu AH (2016) Designed synthesis of nitrogen-rich carbon wrapped Sn nanoparticles hybrid anode via in situ growth of crystalline ZIF-8 on a binary metal oxide. Nano Energy 19:486–494. doi:10.1016/j.nanoen.2015.10.033

    Article  Google Scholar 

  33. Wang J, Sun X (2012) Understanding and recent development of carbon coating on LiFePO4 cathode materials for lithium-ion batteries. Energy Environ Sci 5:5163–5185. doi:10.1039/c1ee01263k

    Article  Google Scholar 

  34. Zhan WW, Kuang Q, Zhou JZ, Kong XJ, Xie ZX, Zheng LS (2013) Semiconductor@metal–organic framework core–shell heterostructures: a case of ZnO@ZIF-8 nanorods with selective photoelectrochemical response. J Am Chem Soc 135:1926–1933. doi:10.1021/ja311085e

    Article  Google Scholar 

  35. Liu X, Chang Z, Luo L et al (2014) Hierarchical Zn x Co3−x O4 nanoarrays with high activity for electrocatalytic oxygen evolution. Chem Mater 26:1889–1895. doi:10.1021/cm4040903

    Article  Google Scholar 

  36. Menezes PW, Indra A, Bergmann A et al (2016) Uncovering the prominent role of metal ions in octahedral versus tetrahedral sites of cobalt-zinc oxide catalysts for efficient oxidation of water. J Mater Chem A 4:10014–10022. doi:10.1039/c6ta03644a

    Article  Google Scholar 

  37. Guo L, Ru Q, Song X, Hu S, Mo Y (2015) Pineapple-shaped ZnCo2O4 microspheres as anode materials for lithium ion batteries with prominent rate performance. J Mater Chem A 3:8683–8692. doi:10.1039/c5ta00830a

    Article  Google Scholar 

  38. Niu H, Yang X, Jiang H et al (2015) Hierarchical core–shell heterostructure of porous carbon nanofiber@ZnCo2O4 nanoneedle arrays: advanced binder-free electrodes for all-solid-state supercapacitors. J Mater Chem A 3:24082–24094. doi:10.1039/c5ta07439h

    Article  Google Scholar 

  39. Huang XH, Xia XH, Yuan YF, Zhou F (2011) Porous ZnO nanosheets grown on copper substrates as anodes for lithium ion batteries. Electrochim Acta 56:4960–4965. doi:10.1016/j.electacta.2011.03.129

    Article  Google Scholar 

  40. Gao G, Wu HB, Dong B, Ding S, Lou XW (2015) Growth of ultrathin ZnCo2O4 nanosheets on reduced graphene oxide with enhanced lithium storage properties. Adv Sci 2:1400014. doi:10.1002/advs.201400014

    Article  Google Scholar 

  41. Qu B, Hu L, Li Q, Wang Y, Chen L, Wang T (2014) High-performance lithium-ion battery anode by direct growth of hierarchical ZnCo2O4 nanostructures on current collectors. Acs Appl Mater Interfaces 6:731–736. doi:10.1021/am405238a

    Article  Google Scholar 

  42. Bai J, Li X, Liu G, Qian Y, Xiong S (2014) Anodes: unusual formation of ZnCo2O4 3D hierarchical twin microspheres as a high-rate and ultralong-life lithium-ion battery anode material (Adv Funct Mater 20/2014). Adv Funct Mater 24:3012–3020. doi:10.1002/adfm.201470131

    Article  Google Scholar 

  43. Xie Q, Li F, Guo H et al (2013) Template-free synthesis of amorphous double-shelled zinc-cobalt citrate hollow microspheres and their transformation to crystalline ZnCo2O4 microspheres. Acs Appl Mater Interfaces 5:5508–5517. doi:10.1021/am400696x

    Article  Google Scholar 

  44. Deng J, Lv X, Gao J et al (2013) Facile synthesis of carbon-coated hematite nanostructures for solar water splitting. Energy Environ Sci 6:1965–1970. doi:10.1039/C3EE00066D

    Article  Google Scholar 

  45. Lv X, Deng J, Wang J, Zhong J, Sun X (2015) Carbon-coated a-Fe2O3 nanostructures for efficient anode of Li-ion battery. J Mater Chem A 3:5183–5188. doi:10.1039/C4TA06415A

    Article  Google Scholar 

  46. Mondal AK, Su D, Chen S, Xie X, Wang G (2014) Highly porous NiCo2O4 Nanoflakes and nanobelts as anode materials for lithium-ion batteries with excellent rate capability. Acs Appl Mater Interfaces 6:14827–14835. doi:10.1021/am5036913

    Google Scholar 

  47. Li J, Xiong S, Li X, Qian Y (2012) Spinel Mn1.5Co1.5O4 core–shell microspheres as Li-ion battery anode materials with a long cycle life and high capacity. J Mater Chem 22:23254–23259. doi:10.1039/c2jm35607d

    Article  Google Scholar 

  48. Bissett MA, Worrall SD, Kinloch IA, Dryfe RAW (2016) Comparison of two-dimensional transition metal dichalcogenides for electrochemical supercapacitors. Electrochim Acta 201:30–37. doi:10.1016/j.electacta.2016.03.190

    Article  Google Scholar 

  49. Bruce PG, Scrosati B, Tarascon JM (2008) Nanomaterials for rechargeable lithium batteries. Angew Chem Int Ed 47:2930–2946. doi:10.1002/anie.200702505

    Article  Google Scholar 

  50. Tang H, Dou K, Kaun C-C, Kuang Q, Yang S (2014) MoSe2 nanosheets and their graphene hybrids: synthesis, characterization and hydrogen evolution reaction studies. J Mater Chem A 2:360–364

    Article  Google Scholar 

  51. Zhu Y, Guo H, Wu Y, Cao C, Tao S, Wu Z (2014) Surface-enabled superior lithium storage of high-quality ultrathin NiO nanosheets. J Mater Chem A 2:7904–7911. doi:10.1039/C4TA00257A

    Article  Google Scholar 

  52. Zhou G, Wang DW, Yin LC, Li N, Li F, Cheng HM (2012) Oxygen bridges between NiO nanosheets and graphene for improvement of lithium storage. Acs Nano 6:3214–3223. doi:10.1021/nn300098m

    Article  Google Scholar 

  53. Reddy MV, Yu T, Sow CH et al (2007) α-FeOnanoflakes as an anode material for Li-ion batteries. Adv Funct Mater 17:2792–2799. doi:10.1002/adfm.200601186

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Nature Science Foundation of China (Nos: 51372278 and 21303270).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Suqin Liu or Zhen He.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2935 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gan, Q., Zhao, K., Liu, S. et al. MOF-derived carbon coating on self-supported ZnCo2O4–ZnO nanorod arrays as high-performance anode for lithium-ion batteries. J Mater Sci 52, 7768–7780 (2017). https://doi.org/10.1007/s10853-017-1043-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-1043-4

Keywords

Navigation