Skip to main content
Log in

Interfacial adhesion of a grafted polymer on a cellulose surface: a first-principles study

  • Polymers & biopolymers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

This paper presents the first-principles investigation on interfacial adhesive strength between grafted polymer and cellulose. Focusing on maleic anhydride-grafted polypropylene, which is expected to be used in various applications including automobiles, a simple interfacial model was constructed under a local tensile loading condition. Then the stress–strain relation, deformation of molecular structure and breaking process were discussed. From comparison of mechanical responses among three chemically possible bonding configurations, it was clarified that the monoester bond exhibited higher interfacial strength than the diester bond. We also found that controlling the bonding configuration can improve the interface strength by about 50% compared to when primary OH groups react to form ester bonds. It was proved that this first-principles calculation model was effective for the definitive design and development of chemical modification of nanocellulose.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. Dufresne A (2013) Nanocellulose: a new ageless bionanomaterial. Mater Today 16:220–227

    Article  CAS  Google Scholar 

  2. Sharma A, Thakur M, Bhattacharya M, Mandal T, Goswami S (2019) Commercial application of cellulose nano-composites–A review. Biotechnol Rep 21:e00316

    Article  Google Scholar 

  3. Habibi Y, Goffin AL, Schiltz N, Duquesne E, Dubois P, Dufresne A (2008) Bionanocomposites based on poly("-caprolactone)-grafted cellulose nanocrystals by ring-opening polymerization. J Mater Chem 18:5002–5010

    Article  CAS  Google Scholar 

  4. Tang J, Sisler J, Grishkewich N, Tam KC (2017) Functionalization of cellulose nanocrystals for advanced applications. J Coll Interface Sci 494:397–409

    Article  CAS  Google Scholar 

  5. Nakagaito AN, Yano H (2008) The effect of fiber content on the mechanical and thermal expansion properties of biocomposites based on microfibrillated cellulose. Cellulose 15:555–559

    Article  CAS  Google Scholar 

  6. Lee K-Y, Aitomäki Y, Berglund LA, Oksman K, Bismarck A (2014) On the use of nanocellulose as reinforcement in polymer matrix composites. Compos Sci Technol 105:15–27

    Article  Google Scholar 

  7. Noguchi T, Endo M, Niihara K, Jinnai H, Isogai A (2020) Cellulose nanofiber/elastomer composites with high tensile strength, modulus, toughness, and thermal stability prepared by high-shear kneading. Composites Sci Tech 188:08005

    Article  Google Scholar 

  8. Lima DS, Borsali MM, Rodlike R (2004) Cellulose microcrystals: structure, properties, and applications. Macromol Rapid Commun 25:771–787

    Article  Google Scholar 

  9. Dufresne A (2003) Interfacial phenomena in nanocomposites based on polysaccharide nanocrystals. Compos Interfaces 10:369–387

    Article  CAS  Google Scholar 

  10. Chakrabarty A, Teramoto Y (2018) Recent advances in nanocellulose composites with polymers: a guide for choosing partners and how to incorporate them. Polymers 10:517. https://doi.org/10.3390/polym10050517

    Article  CAS  Google Scholar 

  11. Mohit H, Selvan VAM (2018) A comprehensive review on surface modification, structure interface and bonding mechanism of plant cellulose fiber reinforced polymer based composites. Compos Interfaces 25:629–667

    Article  CAS  Google Scholar 

  12. Xu J, Wu Z, Wu Q (2020) Kuang Y (2020) Acetylated cellulose nanocrystals with high-crystallinity obtained by one-step reaction from the traditional acetylation of cellulose. Carbohyd Polym 229:115553

    Article  CAS  Google Scholar 

  13. Rahmat M, Karrabi M, Ghasemi I, Zandi M, Azizi H (2016) Silane crosslinking of electrospun poly(lactic acid)/nanocrystalline cellulose bionanocomposite. Mater Sci Eng C 68:397–405

    Article  CAS  Google Scholar 

  14. Lee MK, Biermann CJ (1992) Grafting of maleic anhydride copolymers onto cellulose acetate and methyl cellulose. J Wood Chem Technol 12:231–240

    Article  CAS  Google Scholar 

  15. Mulyadi A, Deng Y (2016) Surface modification of cellulose nanofibrils by maleated styrene block copolymer and their composite reinforcement application. Cellulose 23:519–528

    Article  CAS  Google Scholar 

  16. Roy D, Semsarilar M, Guthrie JT, Perrier S (2009) Cellulose modification by polymer grafting: a review. Chem Soc Rev 38:2046–2064

    Article  CAS  Google Scholar 

  17. Myoung SH, Im SS, Kim SH (2016) Non-isothermal crystallization behavior of PLA/acetylated cellulose nanocrystal/silica nanocomposites. Polym Int 65:115–124

    Article  CAS  Google Scholar 

  18. Zimmermann MVG, Silva MP, Zattera AJ, Santana RMC (2017) Effect of nanocellulose fibers and acetylated nanocellulose fibers on properties of poly(Ethylene-Co-Vinyl acetate) foams. J Appl Polym Sci 134:44760

    Article  Google Scholar 

  19. Lee HG, Kim GH, Ha CS (2017) Polyimide/amine-functionalized cellulose nanocrystal nanocomposite films. Mater Today Commun 13:275–281

    Article  CAS  Google Scholar 

  20. Frone AN, Panaitescu DM, Chiulan I, Nicolae CA, Vuluga Z, Vitelaru C, Damian CM (2016) The effect of cellulose nanofibers on the crystallinity and nanostructure of poly(lactic acid) composites. J Mater Sci 51:9771–9791https://doi.org/10.1007/s10853-016-0212-1

    Article  CAS  Google Scholar 

  21. Parize DDS, Oliveira JE, Williams T, Wood D, Avena-Bustillos RJ, Klamczynski AP, Glenn GM, Marconcini JM, Mattoso LHC (2017) Solution blow spun nanocomposites of poly(lactic acid)/cellulose nanocrystals from Eucalyptus kraft pulp. Carbohydr Polymer 174:923–932

    Article  CAS  Google Scholar 

  22. Peng Y, Gallegos SA, Gardner DJ, Han Y, Cai Z (2016) Maleic anhydride polypropylene modified cellulose nanofibril polypropylene nanocomposites with enhanced impact strength. Polym Compos 37:782–793

    Article  CAS  Google Scholar 

  23. Li Y, Lin M, Davenport JW (2011) Ab initio studies of cellulose i: crystal structure, intermolecular forces, and interactions with water. J Phys Chem C 115:11533–11539

    Article  CAS  Google Scholar 

  24. Qian X, Ding SY, Nimlos MR, Johnson DK, Himmel ME (2005) Atomic and electronic structures of molecular crystalline cellulose Iβ: a first-principles investigation. Macromolecules 38:10580–10589

    Article  CAS  Google Scholar 

  25. Tanaka F, Iwata T (2006) Estimation of the elastic modulus of cellulose crystal by molecular mechanics simulation. Cellulose 1:509–517

    Article  Google Scholar 

  26. Wu X, Moon RJ, Martini A (2013) Crystalline cellulose elastic modulus predicted by atomistic models of uniform deformation and nanoscale indentation. Cellulose 20:43–55

    Article  CAS  Google Scholar 

  27. Wu X, Moon RJ, Martini A (2014) Tensile strength of Iβ crystalline cellulose predicted by molecular dynamics simulation. Cellulose 21:2233–2245

    Article  CAS  Google Scholar 

  28. Saitoh K, Ohno H, Matsuo S (2013) Structure and mechanical behavior of cellulose nanofiber and micro-fibrils by molecular dynamics simulation. Soft Nanosci Lett 3:58–67

    Article  Google Scholar 

  29. Muthoka RM, Kim HC, Kim JW, Zhai L, Panicker PS, Kim J (2020) Steered pull simulation to determine nanomechanical properties of cellulose nanofiber. Materials 13:710. https://doi.org/10.3390/ma13030710

    Article  CAS  Google Scholar 

  30. Bergenstråhle M, Berglund LA, Mazeau K (2007) Thermal response in crystalline I cellulose: a molecular dynamics study. J Phys Chem B 111:9138–9145

    Article  Google Scholar 

  31. Ren Z, Guo R, Bi H, Jia X, Xu M, Cai L (2020) Interfacial adhesion of polylactic acid on cellulose surface: a molecular dynamics study. ACS Appl Mater Interfaces 12:3236–3244

    Article  CAS  Google Scholar 

  32. Segall MD, Lindan PJD, Probert MJ, Pickard CJ, Hasnip PJ, Clark SJ, Payne MC (2002) First-principles simulation:ideas, illustrations and the CASTEP code. J Phys Condens Matter 14:2717–2743

    Article  CAS  Google Scholar 

  33. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865

    Article  CAS  Google Scholar 

  34. Kresse G, Joubert D (1999) From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B 59:1758

    Article  CAS  Google Scholar 

  35. Pack JD, Monkhorst HJ (1977) Special points for Brillouin-zone integrations—a reply. Phys Rev B 16:1748

    Article  Google Scholar 

  36. Niwa S, Saito Y, Ito M, Ogoe S, Ito H, Sunaga Y, Aoki K, Endo T, Teramoto Y (2017) Direct spectroscopic detection of binding formation by kneading of biomass filler and acid-modified resin. Polymer 125:161–171

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasutomo Uetsuji.

Additional information

Handling Editor: Stephen Eichhorn.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Uetsuji, Y., Higuchi, S., Murayama, K. et al. Interfacial adhesion of a grafted polymer on a cellulose surface: a first-principles study. J Mater Sci 56, 3589–3599 (2021). https://doi.org/10.1007/s10853-020-05463-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-05463-z

Navigation