Skip to main content
Log in

Epoxy/ copper-nickel metal foam composites with high thermal conductivity using an electroplating method

  • Composites & nanocomposites
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Simply filling the metal foam as a thermally conductive filler into the polymer matrix can improve the thermal conductivity of the polymer matrix, but it still cannot greatly improve the thermal conductivity of the composites. In this paper, the epoxy resin/copper foam-nickel (EP/CF-Ni) composite thermal conductive material was prepared by a combination of electroplating and vacuum liquid impregnation. The deposition of nickel increases the heat dissipation area of the copper foam and at the same time widens the heat conduction path of the materials. By comparing EP/CF with different pores and EP/CF-Ni with different deposition times, it was found that the thermal conductivity of EP/CF-Ni composites could reach 5.215 W/(mK) at 7.3 wt% nickel deposition, which enhanced 2507% and 75% compared to pure epoxy and copper foam matrix composites, respectively. The deposition of nickel further improves the wear resistance of the composite. This experiment reveals the synergistic effect of thermal conductivity of metallic Ni and 3D copper foam, and provides some reference opinions for the field of thermal conductivity of metallic foam.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Xue Y, Lofland S, Hu X (2020) Protein-based flexible thermal conductive materials with continuous network structure: Fabrication, properties, and theoretical modeling. Compos B Eng 201:108377. https://doi.org/10.1016/j.compositesb.2020.108377

    Article  CAS  Google Scholar 

  2. Burger N, Laachachi A, Ferriol M, Lutz M, Toniazzo V, Ruch D (2016) Review of thermal conductivity in composites: Mechanisms, parameters and theory. Prog Polym Sci 61:1–28. https://doi.org/10.1016/j.progpolymsci.2016.05.001

    Article  CAS  Google Scholar 

  3. Ruan K, Guo Y, Gu J (2021) Liquid crystalline polyimide films with high intrinsic thermal conductivities and robust toughness. Macromolecules 54:4934–4944. https://doi.org/10.1021/acs.macromol.1c00686

    Article  CAS  Google Scholar 

  4. Ruan K, Zhong X, Shi X, Dang J, Gu J (2021) Liquid crystal epoxy resins with high intrinsic thermal conductivities and their composites: a mini-review. Mater Today Phys 20:100456. https://doi.org/10.1016/j.mtphys.2021.100456

    Article  CAS  Google Scholar 

  5. Koh YR, Cheng Z, Mamun A, Bin Hoque MS, Liu Z, Bai T, Hussain K, Liao ME, Li R, Gaskins JT, Giri A, Tomko J, Braun JL, Gaevski M, Lee E, Yates L, Goorsky MS, Luo T, Khan A, Graham S, Hopkins PE (2020) Bulk-like intrinsic phonon thermal conductivity of micrometer-thick AlN films. ACS Appl Mater Interfaces 12:29443–29450. https://doi.org/10.1021/acsami.0c03978

    Article  CAS  Google Scholar 

  6. Chen W, Wu K, Qu Z, Lu M (2019) Intrinsic high thermal conductive co-polyester based on offset π-π stacking. Eur Polym J 121:109275. https://doi.org/10.1016/j.eurpolymj.2019.109275

    Article  CAS  Google Scholar 

  7. Wang X, Liu H, Qiu X, Wang L, Wang L (2018) Thermal conductivity of filled composite materials considering interactions between fillers. Appl Therm Eng 141:835–843. https://doi.org/10.1016/j.applthermaleng.2018.06.022

    Article  CAS  Google Scholar 

  8. Liu S, Zhao B, Jiang L, Zhu Y-W, Fu X-Z, Sun R, Xu J-B, Wong C-P (2018) Core–shell Cu@rGO hybrids filled in epoxy composites with high thermal conduction. J Mater Chem C 6:257–265. https://doi.org/10.1039/C7TC04427E

    Article  CAS  Google Scholar 

  9. He X, Wang Y (2019) Synergistic effects on the enhancement of thermal conductive properties of thermal greases. J Appl Polym Sci 136:47726. https://doi.org/10.1002/app.47726

    Article  CAS  Google Scholar 

  10. Gu J, Ruan K (2021) Breaking through bottlenecks for thermally conductive polymer composites: a perspective for intrinsic thermal conductivity, interfacial thermal resistance and theoretics. Nanomicro Lett 13:110. https://doi.org/10.1007/s40820-021-00640-4

    Article  CAS  Google Scholar 

  11. Luo F, Yan P, Li H, Qian Q, Huang B, Chen Q, Wu K, Lu M (2020) Ultrahigh thermally conductive graphene filled liquid crystalline epoxy composites: preparation assisted by polyethylene glycol. Compos Sci Technol 200:108473. https://doi.org/10.1016/j.compscitech.2020.108473

    Article  CAS  Google Scholar 

  12. Ryu SH, Cho H-B, Kwon Y-T, Song Y, Lee J, Lee S-B, Choa Y-H (2020) Quasi-isotropic thermal conduction in percolation networks: using the pore-filling effect to enhance thermal conductivity in polymer nanocomposites. ACS Appl Polym Mater 3:1293–1305. https://doi.org/10.1021/acsapm.0c01061

    Article  CAS  Google Scholar 

  13. Wu X, Shi S, Tang B, Chen J, Shan L, Gao Y, Wang Y, Jiang T, Sun K, Yang K, Yu J (2022) Achieving highly thermal conductivity of polymer composites by adding hybrid silver–carbon fiber fillers. Compos Commun 31:101129. https://doi.org/10.1016/j.coco.2022.101129

    Article  Google Scholar 

  14. Dai S, Li J, Lu N (2020) Research progress of diamond/copper composites with high thermal conductivity. Diamond Relat Mater 108:107993. https://doi.org/10.1016/j.diamond.2020.107993

    Article  CAS  Google Scholar 

  15. Zhan K, Zhao R, Li F, Wang T, Mo W, Yang Z, Zhao B (2021) Fabrication of graphite/Cu composite foils with ultrahigh thermal conductivity by adding an intermediate nickel layer and vacuum hot pressing treatment. J Alloy Compd 886:161228. https://doi.org/10.1016/j.jallcom.2021.161228

    Article  CAS  Google Scholar 

  16. Wen Y, Chen C, Feng Y, Xue Z, Zhou X, Xie X, Mai Y-W (2020) Effects of selective distribution of alumina micro-particles on rheological, mechanical and thermal conductive properties of asphalt/SBS/alumina composites. Compos Sci Technol 186:107917. https://doi.org/10.1016/j.compscitech.2019.107917

    Article  CAS  Google Scholar 

  17. Ren L, Zeng X, Sun R, Xu J-B, Wong C-P (2019) Spray-assisted assembled spherical boron nitride as fillers for polymers with enhanced thermally conductivity. Chem Eng J 370:166–175. https://doi.org/10.1016/j.cej.2019.03.217

    Article  CAS  Google Scholar 

  18. Lule ZC, Kim J (2020) Thermally conductive polybutylene succinate composite filled with Si–O–N–C functionalized silicon carbide fabricated via low-speed melt extrusion. Eur Polym J 134:109849. https://doi.org/10.1016/j.eurpolymj.2020.109849

    Article  CAS  Google Scholar 

  19. Ruan Y, Li N, Liu C, Chen L, Zhang S, Wang Z (2020) Increasing heat transfer performance of thermoplastic polyurethane by constructing thermal conduction channels of ultra-thin boron nitride nanosheets and carbon nanotubes, New. J Chem 44:18823–18830. https://doi.org/10.1039/D0NJ04215C

    Article  CAS  Google Scholar 

  20. Guo M, Qian Y, Qi H, Bi K, Chen Y (2020) Experimental measurements on the thermal conductivity of strained monolayer graphene. Carbon 157:185–190. https://doi.org/10.1016/j.carbon.2019.10.027

    Article  CAS  Google Scholar 

  21. Liu Y, Li Y, Xing J, Wang S, Zheng B, Tao D, Li W (2018) Effect of graphite morphology on the tensile strength and thermal conductivity of cast iron. Mater Charact 144:155–165. https://doi.org/10.1016/j.matchar.2018.07.001

    Article  CAS  Google Scholar 

  22. Wu X, Tang B, Chen J, Shan L, Gao Y, Yang K, Wang Y, Sun K, Fan R, Yu J (2021) Epoxy composites with high cross-plane thermal conductivity by constructing all-carbon multidimensional carbon fiber/graphite networks. Compos Sci Technol 203:108610. https://doi.org/10.1016/j.compscitech.2020.108610

    Article  CAS  Google Scholar 

  23. Ruan K, Shi X, Guo Y, Gu J (2020) Interfacial thermal resistance in thermally conductive polymer composites: a review. Compos Commun 22:100518. https://doi.org/10.1016/j.coco.2020.100518

    Article  Google Scholar 

  24. Li L, Zhou B, Han G, Feng Y, He C, Su F, Ma J, Liu C (2020) Understanding the effect of interfacial engineering on interfacial thermal resistance in nacre-like cellulose nanofiber/graphene film. Compos Sci Technol 197:108229. https://doi.org/10.1016/j.compscitech.2020.108229

    Article  CAS  Google Scholar 

  25. Li M, Li L, Hou X, Qin Y, Song G, Wei X, Kong X, Zhang Z, Do H, Greer JC, Han F, Cai T, Dai W, Lin C-T, Jiang N, Yu J (2021) Synergistic effect of carbon fiber and graphite on reducing thermal resistance of thermal interface materials. Compos Sci Technol 212:108883. https://doi.org/10.1016/j.compscitech.2021.108883

    Article  CAS  Google Scholar 

  26. Tan F, Han S, Peng D, Wang H, Yang J, Zhao P, Ye X, Dong X, Zheng Y, Zheng N, Gong L, Liang C, Frese N, Gölzhäuser A, Qi H, Chen S, Liu W, Zheng Z (2021) Nanoporous and highly thermal conductive thin film of single-crystal covalent organic frameworks ribbons. J Am Chem Soc 143:3927–3933. https://doi.org/10.1021/jacs.0c13458

    Article  CAS  Google Scholar 

  27. Cheng R, Li W, Wei W, Huang J, Li S (2021) Molecular insights into the correlation between microstructure and thermal conductivity of zeolitic imidazolate frameworks. ACS Appl Mater Interfaces 13:14141–14149. https://doi.org/10.1021/acsami.0c21220

    Article  CAS  Google Scholar 

  28. Cong R, Xu C, Chen Y, Ran F, Fang G (2021) Enhanced thermal conductivity of palmitic acid/copper foam composites with carbon nanotube as thermal energy storage materials. J Energy Storage 40:102783. https://doi.org/10.1016/j.est.2021.102783

    Article  Google Scholar 

  29. Zhu W, Hu N, Wei Q, Zhang L, Li H, Luo J, Lin C-T, Ma L, Zhou K, Yu Z (2019) Carbon nanotube-Cu foam hybrid reinforcements in composite phase change materials with enhanced thermal conductivity. Mater Des 172:107709. https://doi.org/10.1016/j.matdes.2019.107709

    Article  CAS  Google Scholar 

  30. Sheng N, Zhu C, Rao Z (2021) Solution combustion synthesized copper foams for enhancing the thermal transfer properties of phase change material. J Alloy Compd 871:159458. https://doi.org/10.1016/j.jallcom.2021.159458

    Article  CAS  Google Scholar 

  31. Lee S, Kim J (2020) Thermally conductive 3D binetwork structured aggregated boron nitride/Cu-foam/polymer composites. Synth Met 270:116587. https://doi.org/10.1016/j.synthmet.2020.116587

    Article  CAS  Google Scholar 

  32. Zheng X, Gao X, Huang Z, Li Z, Fang Y, Zhang Z (2021) Form-stable paraffin/graphene aerogel/copper foam composite phase change material for solar energy conversion and storage. Sol Energy Mater Sol Cells 226:111083. https://doi.org/10.1016/j.solmat.2021.111083

    Article  CAS  Google Scholar 

  33. Wang C, Lin T, Li N, Zheng H (2016) Heat transfer enhancement of phase change composite material: copper foam/paraffin. Renew Energy 96:960–965. https://doi.org/10.1016/j.renene.2016.04.039

    Article  CAS  Google Scholar 

  34. Xiao Q, Zhang M, Fan J, Li L, Xu T, Yuan W (2019) Thermal conductivity enhancement of hydrated salt phase change materials employing copper foam as the supporting material. Sol Energy Mater Sol Cells 199:91–98. https://doi.org/10.1016/j.solmat.2019.04.020

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Project Funded by China Postdoctoral Science Foundation (2017M611757), the Special Fund of the National Natural Science Foundation of China (51573201and 51803119) and Shanghai High-level Local University Innovation Team (Maritime safety & technical support).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xinfeng Wu, Wenge Li or Jinhong Yu.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Handling Editor: Catalin Croitoru.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, T., Wang, Y., Zhang, S. et al. Epoxy/ copper-nickel metal foam composites with high thermal conductivity using an electroplating method. J Mater Sci 57, 15374–15384 (2022). https://doi.org/10.1007/s10853-022-07588-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-022-07588-9

Navigation