Skip to main content
Log in

Nanostructure, optical and photoluminescence properties of Zn1−xNixO nanoclusters by co-precipitation method

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Zn1−xNixO (x = 0, 0.01, 0.02, 0.03, 0.04 and 0.05) nanoclusters have been successfully synthesized by co-precipitation method. The synthesized samples have been characterized by powder X-ray diffraction, energy dispersive X-ray spectra, UV–visible spectrophotometer and Fourier transform infrared spectroscopy. The XRD and SEM measurements reveal that the prepared undoped and Ni-doped nanoclusters have different microstructure without changing a hexagonal wurtzite structure. The calculated average crystalline size from XRD measurement decreases from 37.5 to 26.6 nm for x = 0 to 0.05 which was confirmed by SEM micrographs. The change in lattice parameters, micro-strain, shift of XRD peaks and the blue shift of energy gap from 3.18 to 3.33 eV (ΔEg = 0.15 eV) for Ni = 0–0.02 and red shift of Eg from 3.33 to 3.14 eV (ΔEg = 0.19 eV) for Ni = 0.02 to 0.05 reveal the substitution of Ni2+ ions into Zn–O lattice. The presence of functional groups and the chemical bonding are confirmed by FTIR spectra. The shift of NBE UV emission between 374 and 395 nm, the shift of green band emission between 517 and 531 nm, the change in intensity and the broadening effect in the photoluminescence spectra confirms the substitution of Ni2+ ions into the Zn–O lattice. Ni-doped ZnO system shows a great pledge for the fabrication of nano-optoelectronic devices like tunable light emitting diode in the near future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. S.D. Sarma, Nat. Matters 2, 292 (2003)

    Article  Google Scholar 

  2. S.J. Pearton, C.R. Abernathy, M.E. Overberg, G.T. Thaler, A.F. Hebard, Y.D. Park, F. Ren, J. Kim, L.A. Boatner, J. Appl. Phys. 1, 93 (2003)

    Google Scholar 

  3. T. Dietl, Semicond. Sci. Technol. 17, 377 (2002)

    Article  CAS  Google Scholar 

  4. I. Malajovich, J.J. Berry, N. Samarth, D.D. Awshalom, Nature 411, 770 (2001)

    Article  CAS  Google Scholar 

  5. H. Ohno, Science 281, 951 (1998)

    Article  CAS  Google Scholar 

  6. B. Pandey, S. Ghosh, P. Srivastava, D. Kabiraj, T. Shripati, N.P. Lalla, Physica E 41, 1164 (2009)

    Article  CAS  Google Scholar 

  7. U. Ozgur, Y.I. Alivov, C. Liu, A. Teke, M.A. Reshchikov, S. Dogan, V. Vrutin, S.J. Cho, H. Morkoc, J. Appl. Phys. 98, 041301 (2005)

    Article  Google Scholar 

  8. R. Könenkamp, R.C. Word, C. Schlegel, Appl. Phys. Lett. 85, 6004 (2004)

    Article  Google Scholar 

  9. Q. Yan, R. He, J. Pham, P.D. Yang, Adv. Mater. 15, 402 (2003)

    Article  CAS  Google Scholar 

  10. D. Deka, P.S. Joy, Appl. Phys. Lett. 89, 032508 (2006)

    Article  Google Scholar 

  11. D.C. Look, Mater. Sci. Eng. B 80, 383 (2001)

    Article  Google Scholar 

  12. J.J. Chen, F. Zeng, D.M. Li, J.B. Niu, F. Pan, Thin Solid Films 484, 257 (2005)

    Article  Google Scholar 

  13. M. El-Hilo, A.A. Dakhel, A.Y. Ali-Mohamed, J. Magn. Magn. Mater. 321, 2279 (2009)

    Article  CAS  Google Scholar 

  14. M. Venkatesan, C.B. Fizgerald, J.G. Lunney, J.M.D. Coey, Phys. Rev. Lett. 93, 177206 (2004)

    Article  CAS  Google Scholar 

  15. X.X. Liu, F.T. Lin, L.L. Sun, W.J. Cheng, X.M. Ma, W.Z. Shi, Appl. Phys. Lett. 88, 062508 (2006)

    Article  Google Scholar 

  16. P.V. Radovanovic, D.R. Gamelin, Phys. Rev. Lett. 91, 157202 (2003)

    Article  Google Scholar 

  17. E. Liu, P. Xiao, J.S. Chen, B.C. Lim, L. Li, Current Appl. Phys. 8, 408 (2008)

    Article  Google Scholar 

  18. T. Li, H. Qiu, P. Wu, M. Wang, R. Ma, Thin Solid Films 515, 3905 (2007)

    Article  CAS  Google Scholar 

  19. K. Ueda, H. Tabata, T. Kawai, Appl. Phys. Lett. 79, 988 (2001)

    Article  CAS  Google Scholar 

  20. Z. Zhang, C. Bao, Q. Li, S. Ma, S. Hou, J. Mater. Sci.: Mater. Electron. 23, 376 (2012)

    Article  Google Scholar 

  21. H. Wang, Z. Huang, J. Xu, L. Yang, S. Zhou, J. Mater. Sci.: Mater. Electron. 23, 403 (2012)

    Article  Google Scholar 

  22. K. Tarasov, O. Raccurt, J. Nanopart. Res. 13, 6717 (2011)

    Article  CAS  Google Scholar 

  23. A. Yildiz, B. Yurduguzel, B. Kayhan, G. Calin, M. Dobromir, F. Iacomi, J. Mater. Sci.: Mater. Electron. 23, 425 (2012)

    Article  CAS  Google Scholar 

  24. C.F. Jin, X. Yuan, W.W. Ge, J.M. Hong, X.Q. Xin, Nanotechnology 14(6), 667 (2003)

    Article  CAS  Google Scholar 

  25. H. Udono, Y. Sumi, S. Yamada, I. Kikuma, J. Cryst. Growth 310, 1827 (2008)

    Article  CAS  Google Scholar 

  26. T. Tsuzuki, P.G. McCormick, Scr. Mater. 44, 1731 (2001)

    Article  CAS  Google Scholar 

  27. Y. Dai, Y. Zhang, Q.K. Li, C.W. Nan, Chem. Phys. Lett. 358, 83 (2002)

    Article  CAS  Google Scholar 

  28. C.L. Zhang, W.N. Zhou, Y. Hang, Z. Lu, H.D. Hou, Y.B. Zuo, S.J. Qin, F.H. Lu, S.L. Gu, J. Cryst. Growth 310, 1819 (2008)

    Article  CAS  Google Scholar 

  29. S.E. Ahn, J.S. Lee, H. Kim, S. Kim, B.H. Kang, K.H. Kim, G.T. Kim, Appl. Phys. Lett. 84(24), 5022 (2004)

    Article  CAS  Google Scholar 

  30. I.R. Collins, S.E. Taylor, J. Mater. Chem. 2, 1277 (1992)

    Article  CAS  Google Scholar 

  31. D. Jezequel, J. Guenot, N. Jouini, F. Fievet, J. Mater. Res. 10, 77 (1995)

    Article  CAS  Google Scholar 

  32. L. Poul, S. Ammar, N. Jouini, F. Fievet, F. Villain, Solid State Sci. 3, 31 (2001)

    Article  CAS  Google Scholar 

  33. L. Poul, S. Ammar, N. Jouini, F. Fievet, F. Villain, J Sol–Gel Sci. Technol. 26, 261 (2003)

    Article  CAS  Google Scholar 

  34. S. Lee, S. Jeong, D. Kim, S. Hwang, M. Jeon, J. Moon, Superlattices Microstruct. 43, 330 (2008)

    Article  CAS  Google Scholar 

  35. H. Wang, Y. Chen, H.B. Wang, C. Zhang, F.J. Yang, J.X. Duan, C.P. Yang, Y.M. Xu, M.J. Zhou, Q. Li, Appl. Phys. Lett. 90, 052505 (2007)

    Article  Google Scholar 

  36. B.B. Li, X.Q. Xiu, R. Zhang, Z.K. Tao, L. Chen, Z.L. Xie, Y.D. Zheng, Z. Xie, Mater. Sci. Semicond. Proc. 9, 141 (2006)

    Article  CAS  Google Scholar 

  37. C.J. Cong, J.H. Hong, Q.Y. Liu, L. Liao, K.L. Zhang, Solid State Commun. 138, 511 (2006)

    Article  CAS  Google Scholar 

  38. T. Al-Harbi, J. Alloys Comp. 509, 387 (2011)

    Article  CAS  Google Scholar 

  39. R. Elilarassi, G. Chandrasekaran, Mater. Chem. Phys. 123, 450 (2010)

    Article  CAS  Google Scholar 

  40. S. Abed, M.S. Aida, K. Bouchouit, A. Arbaoui, K. Iliopoulos, B. Sahraoui, Optical Mater 33, 968 (2011)

    Article  CAS  Google Scholar 

  41. JCPDS standard card No. 36-1451

  42. A. Askarinejad, A. Morsali, Ultrason. Sonochem. 16, 124 (2009)

    Article  CAS  Google Scholar 

  43. S. Muthukumaran, R. Gopalakrishnan, J. Sol-Gel. Sci. Technol. 62, 193 (2012)

    Article  CAS  Google Scholar 

  44. P.P. Hankare, P.A. Chate, D.J. Sathe, P.A. Chavan, V.M. Bhuse, J. Mater. Sci.: Mater. Electron. 20, 374 (2009)

    Article  CAS  Google Scholar 

  45. J. Pelleg, E. Elish, J. Vac. Sci. Technol. A20, 754 (2002)

    Google Scholar 

  46. A.J. Reddy, M.K. Kokila, H. Nagabhushan, R.P.S. Chakradhar, C. Shivakumar, J.L. Rao, B.M. Nagabhushan, J. Alloys Compd. 509, 5349 (2011)

    Article  CAS  Google Scholar 

  47. V. Goyal, K.P. Bhatti, S. Chaudhary, J. Alloys Comp. 508, 419 (2010)

    Article  CAS  Google Scholar 

  48. R.D. Shannon, Acta Crystallogr. A 32, 751 (1976)

    Article  Google Scholar 

  49. S. Thota, L.M. Kukreja, J. Kumar, Thin Solid Films 517, 750 (2008)

    Article  CAS  Google Scholar 

  50. H. Colak, O. Turkoglu, J. Mater. Sci. Technol. 27(10), 944 (2011)

    Article  CAS  Google Scholar 

  51. D. Wu, M. Yang, Z. Huang, G. Yin, X. Liao, Y. Kang, X. Chen, H. Wang, J. Colloid Interface Sci. 300, 380 (2008)

    Google Scholar 

  52. S. Suwanboon, P. Amornpitoksuk, A. Haidoux, J.C. Tedenac, J. Alloys Compd. 462, 335 (2008)

    Article  CAS  Google Scholar 

  53. S.K. Mandal, T.K. Nath, Thin Solid Films 515, 2535 (2006)

    Article  CAS  Google Scholar 

  54. A.P. Palomino, O.P. Perez, R. Singhal, M. Tomar, J. Hwang, P.M. Voyles, J. Appl. Phys. 103, 07D121 (2008)

    Article  Google Scholar 

  55. R.B. Bylsma, W.M. Becker, J. Kossut, U. Debska, D. Yoder-Short, Phys. Rev. B 33, 8207 (1986)

    Article  CAS  Google Scholar 

  56. I. Hamberg, C.G. Granqvist, J. Appl. Phys. 60, R123 (1986)

    Article  CAS  Google Scholar 

  57. F.A. Sigoli, M.R. Davolos, M.J. Jafelicci, J. Alloys Compd. 292, 262 (1997)

    Google Scholar 

  58. S. Hayashi, N. Nakamori, H. Kanamori, J. Phys. Soc. Jpn. 46, 176 (1979)

    Article  CAS  Google Scholar 

  59. Sadtler Research Laboratories (ed.), The Infrared Spectra Handbook of Inorganic Compounds (Heyden & Son Ltd., London, 1984)

  60. H. Kleinwechter, C. Janzen, J. Knipping, H. Wiggers, P. Roth, J. Mater. Sci. 7, 4349 (2002)

    Article  Google Scholar 

  61. R.N. Aljawfi, S. Mollah, J. Magn. Magn. Mater. 323, 3126 (2011)

    Article  CAS  Google Scholar 

  62. Y. Xi, C. Sudakar, P. Kharel, G. Lawes, J. Phys.: Condens. Matter 19, 026212 (2007)

    Article  Google Scholar 

  63. C.J. Conga, J.H. Honga, K.L. Zhanga, Mater. Chem. Phys. 113, 435 (2009)

    Article  Google Scholar 

  64. K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds, Parts- A and B (Wiley, New York, 1997)

    Google Scholar 

  65. S. Senthilkumar, K. Rajendran, S. Banerjee, T.K. Chini, V. Sengodan, Mater. Sci. Semi. Process. 11, 6 (2008)

    Article  Google Scholar 

  66. C. Karunakaran, P. Gomathisankar, G. Manikandan, Mater. Chem. Phys. 123, 585 (2010)

    Article  CAS  Google Scholar 

  67. C.K. Xu, K.K. Yang, Y.Y. Liu, L.W. Huang, H. Lee, J. Cho, H. Wang, J. Phys. Chem. C 112, 19236 (2008)

    Article  CAS  Google Scholar 

  68. J.H. Yang, M. Gao, Y.J. Zhang, L.L. Yang, J.H. Lang, D.D. Wang, Y.X. Wang, H.L. Liu, H.G. Fan, M.B. Wei, F.Z. Liu, Chem. Res. Chin. Univ. 24, 1005 (2008)

    CAS  Google Scholar 

  69. T.M. Kim, S.L. Cooper, M.V. Klein, B.T. Jonker, Phys. Rev. B 49, 1732 (1994)

    Article  CAS  Google Scholar 

  70. A.A.M. Farag, M. Cavas, F. Yakuphanoglu, F.M. Amanullah, J. Alloys Comp. 509, 7900 (2011)

    Article  CAS  Google Scholar 

  71. A. Umar, S.H. Kim, Y.S. Lee, K.S. Nahm, Y.B. Hahn, J. Cryst. Growth 282, 131 (2005)

    Article  CAS  Google Scholar 

  72. A.K. Pradhan, T.M. Williams, K. Zhang, D. Hunter, J.B. Dadson, K. Lord, U.N. Roy, Y. Cui, A. Burger, J. Nanosci. Nanotechnol. 6, 1985 (2006)

    Article  CAS  Google Scholar 

  73. Y.M. Sun, Study on the Synthesis and Physical Properties of ZnO-Based Diluted Magnetic Semiconductors, Ph.D. Thesis, 2000, University of Science and Technology of China, China

  74. C. Li, G. Fang, Q. Fu, F. Su, G. Li, X. Wu, X. Zhao, J. Cryst. Growth 292, 19 (2006)

    Article  CAS  Google Scholar 

  75. Y. Sun, N.G. Ndifor-Angwafor, D.J. Riley, M.N.R. Ashfold, Chem. Phys. Lett. 431, 352 (2006)

    Article  CAS  Google Scholar 

  76. K. Vanheusden, W.L. Warren, C.H. Seager, D.R. Tallant, J.A. Voigt, B.E. Gnade, J. Appl. Phys. 79, 7983 (1996)

    Article  CAS  Google Scholar 

  77. B. Cheng, Y. Xiao, G. Wu, L. Zhang, Adv. Funct. Mater. 14(9), 913 (2004)

    Article  CAS  Google Scholar 

  78. U. VeaNislav, R. Emil, Z. Victor, S. Lilian, M. Eduard, T. Ion, Inform. Technol. 5822, 148 (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Muthukumaran.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gopalakrishnan, R., Muthukumaran, S. Nanostructure, optical and photoluminescence properties of Zn1−xNixO nanoclusters by co-precipitation method. J Mater Sci: Mater Electron 24, 1069–1080 (2013). https://doi.org/10.1007/s10854-012-0882-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-012-0882-7

Keywords

Navigation