Skip to main content
Log in

Probing into the optical and electrical properties of hybrid Zn1−xCoxSe thin films

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Probing into the elemental composition, structural, morphological, optical and electrical transport properties of chemically deposited Zn1−xCoxSe (0 ≤ x ≤ 0.275) thin films with a special emphasis given to the Co2+-concentration is presented in this paper. Elemental and structural analysis confirmed the successful realization of Co(ZnSe) thin films. Addition of Co2+ into ZnSe host lattice caused morphological changes from globule like morphology to the formation of leaf like appearance composing the disc-decked micro-flakes elongated in size. The optical studies done in the range of wavelengths between 350 to 1200 nm showed a slight red shift in the optical spectrum with increased Co2+ concentration in the ZnSe matrix. Effect of increased impurity addition is also reflected in the band gap measurements that a decrease in the bandgap, typically from 2.71 to 1.96 eV, is observed for an increase in Co2+ concentration from x = 0–0.275. The other optical parameters namely, refractive index, extinction coefficient, power factor and dielectric constants were determined from these studies and other variations are adequately explained as a special reference to the Co-concentration. The composition dependence of the electrical transport characteristics were studied using the two-probe and Hall measurement techniques. The effect of Co-concentration on the transport characteristics has been studied and mechanism of an electrical conduction is discussed. A continuous increase in an electrical conductivity with n-type conduction has been observed for these samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. A.N. Emam, E. Girgis, A.A. Mostafa, O.W. Guirguis, M.B. Mohamed, Mater. Chem. Phys. (2015). https://doi.org/10.1016/j.matchemphys.2015.05.059

    Google Scholar 

  2. A.S. Hassanien, A.A. Akl, Superlattices Microstruct. 89, 153 (2016)

    Article  Google Scholar 

  3. S.L. Deshmukh, P.C. Pingale, G.T. Chavan, S.T. Pawar, V.M. Prakshale, S.S. Kamble, S.R. Jadkar, N.B. Chaure, C.S. Gopinath, N.N. Maldar, L.P. Deshmukh, J. Mater. Sci. 28, 5070 (2016)

    Google Scholar 

  4. R.K. Nkum, A.A. Adimado, H. Totoe, Mater. Sci. Eng. B 55, 102 (1998)

    Article  Google Scholar 

  5. Y. Zhu, Y. Bando, Chem. Phys. Lett. 377, 367 (2003)

    Article  Google Scholar 

  6. M.J. Grzybowski, A. Golnik, M. Sawicki, W. Pacuski, Solid State Commun. 208, 7 (2015)

    Article  Google Scholar 

  7. Z. Mierczyk, A. Majchrowski, K. Ozga, A. Slezak, I.V. Kityk, Opt. Laser Technol. 38, 558 (2006)

    Article  Google Scholar 

  8. S.T. Pawar, S.S. Kamble, S.M. Pawar, G.T. Chavan, V.M. Prakshale, S.L. Deshmukh, N.B. Chaure, N.N. Maldar, L.P. Deshmukh, J. Mater. Sci. 27, 10582 (2016)

    Google Scholar 

  9. S.T. Pawar, S.S. Kamble, S.M. Pawar, A. Sikora, G.T. Chavan, V.M. Prakshale, P.R. Deshmukh, L.P. Deshmukh, Mater. Lett. 179, 95 (2016)

    Article  Google Scholar 

  10. R.F. Egerton, Physical Principles of Electron Microscopy—An Introduction to TEM, SEM and AEM (Springer, Cham, 2006)

    Google Scholar 

  11. S.T. Pawar, Ph.D. Thesis, Solapur University, Solapur, M.S., India (2017)

  12. T. Minemoto, T. Negami, S. Nishiwaki, H. Takakura, Y. Hamakawa, Thin Solid Films 372, 173 (2000)

    Article  Google Scholar 

  13. J. Li, M. Zhao, X.F. Wang, Physica B 405, 996 (2010)

    Article  Google Scholar 

  14. Y. Guo, L. Zhu, J. Jiang, Y. Li, L. Hu, H. Xu, Z. Ye, Thin Solid Films 558, 311 (2014)

    Article  Google Scholar 

  15. D. Bhattacharya, S. Chaudhuri, A.K. Pal, Vacuum 43, 313 (1992)

    Article  Google Scholar 

  16. Y.D. Tembhurkar, J.P. Hirde, Thin Solid Films 215, 65 (1992)

    Article  Google Scholar 

  17. B.A. Ezekoye, C.E. Okeke, Pac. J. Sci. Technol. 7, 108 (2006)

    Google Scholar 

  18. S.A. Khan, F.S. Al-Hazmi, S. Al-Heniti, A.S. Faidah, A.A. Al-Ghamdi, Curr. Appl. Phys. 10, 145 (2010)

    Article  Google Scholar 

  19. S.S. Kamble, A. Sikora, S.L. Deshmukh, S.T. Pawar, G.T. Chavan, D.P. Dubal, N.B. Chaure, N.N. Maldar, L.P. Deshmukh, J. Mater. Sci. 27, 12302 (2016)

    Google Scholar 

  20. R.P. Oliveira, D.C. Bertagnolli, L. da Silva, E.A. Ferreira, A.S. Paula, G.S. da Fonseca, Appl. Surf. Sci. 420, 53 (2017)

    Article  Google Scholar 

  21. S.T. Mane, P.C. Pingale, R.V. Suryawanshi, V.S. Karande, L.P. Deshmukh, M. Sharon, Electrochim. Acta 114, 494 (2013)

    Article  Google Scholar 

  22. B. Poornaprakash, D.A. Reddy, G. Murali, N.M. Rao, R.P. Vijayalakshmi, B.K. Reddy, J. Alloys Compd. 577, 79 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

One of the authors (STP) would like to acknowledge Solapur University, Solapur for the grant of the Departmental Research Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S. S. Kamble or L. P. Deshmukh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pawar, S.T., Chavan, G.T., Prakshale, V.M. et al. Probing into the optical and electrical properties of hybrid Zn1−xCoxSe thin films. J Mater Sci: Mater Electron 29, 3704–3714 (2018). https://doi.org/10.1007/s10854-017-8302-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-8302-7

Navigation