Skip to main content
Log in

Highly UV sensitive Sn nanoparticles blended with polyaniline onto micro-interdigitated electrode array for UV-C detection applications

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Highly UV sensitive sub-5 nm Sn nanoparticles-Polyaniline (Sn (NPs)-PANI) composite material has been formulated by chemical polymerisation. A thin film of the composite is deposited on Micro-Interdigitated Electrode (µ-IDEs) array for photodetector application. Considerably, higher optical density (10–12), w.r.t carbon of Sn (NPs) in Sn (NPs)-PANI/Al-IDE/Glass structures exhibit the exceedingly enhanced sensitivity towards UV illumination. There is substantial large contrast ratio of ∼ 2290 at − 1 V, significantly large responsivity ∼ 3.05 A/W, detectivity of ~ 2.26E + 13 Jones and reasonable rise/fall time of ∼ 0.7/1.7 s observed for Sn (NPs)-PANI/Al-IDE/Glass devices. Surface morphology, phase analysis, and elemental composition of Sn–PANI systems have been investigated by X-ray diffraction and Energy Dispersive X-ray analysis (EDX), respectively. Transmission electron microscopy (TEM) analysis confirms the size of the Sn (NPs) and blend with Polyaniline. The significantly enhanced sensitivity of ~ 228514.3 for λ ~ 254 nm establishes the clear potential of the fabricated structure for UV-C detector application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. M. Martens, J. Schlegel, P. Vogt, F. Brunner, R. Lossy, J. Würfl, M. Weyers, M. Kneissl, Appl. Phys. Lett. 98, (2011)

  2. J. Yamaura, Y. Muraoka, T. Yamauchi, T. Muramatsu, Z. Hiroi, Appl. Phys. Lett. 83, 2097 (2003)

    Article  Google Scholar 

  3. F. Omnès, E. Monroy, E. Muñoz, and J.-L. Reverchon, Int. Soc. Opt. Photon., 6473, 64730E (2007)

    Google Scholar 

  4. S. Sharma, R. Khosla, D. Deva, H. Shrimali, S.K. Sharma, Sensors Actuators, A Phys. 261, 94 (2017)

    Article  Google Scholar 

  5. J. Agrawal, T. Dixit, I.A. Palani, M.S. Ramachandra Rao, V. Singh, J. Phys. D. Appl. Phys. 51, (2018)

  6. P. Mukhopadhyay, M. Toporkov, W.V. Schoenfeld, Proc. SPIE - Int. Soc. Opt. Eng. 10533, (2018)

  7. B. Albrecht, S. Kopta, O. John, L. Kirste, R. Driad, K. Kohler, M. Walther, O. Ambacher, Jpn. J. Appl. Phys. 52, 6 (2013)

    Article  Google Scholar 

  8. S. Kang, U. Chatterjee, D.Y. Um, Y.T. Yu, I.S. Seo, C.R. Lee, ACS Photon. 4, 2595 (2017)

    Article  Google Scholar 

  9. N. Biyikli, I. Kimukin, O. Aytur, E. Ozbay, IEEE Photonics Technol. Lett. 16, 1718 (2004)

    Article  Google Scholar 

  10. F. Guo, B. Yang, Y. Yuan, Z. Xiao, Q. Dong, Y. Bi, J. Huang, Nat. Nanotechnol. 7, 798 (2012)

    Article  Google Scholar 

  11. F. Mendoza, V. Makarov, B.R. Weiner, G. Morell, Appl. Phys. Lett. 107, (2015)

  12. M.M. Fan, K.W. Liu, X. Chen, Z.Z. Zhang, B.H. Li, H.F. Zhao, D.Z. Shen, J. Mater. Chem. C 3, 313 (2015)

    Article  Google Scholar 

  13. A. Knigge, M. Brendel, F. Brunner, S. Einfeldt, A. Knauer, V. Kueller, M. Weyers, Phys. Status Solidi Curr. Top. Solid State Phys. 10, 294 (2013)

    Google Scholar 

  14. T. Oshima, T. Okuno, N. Arai, N. Suzuki, H. Hino, S. Fujita, Jpn. J. Appl. Phys. 48, (2009)

  15. Y. Jin, J. Wang, B. Sun, J.C. Blakesley, N.C. Greenham, Nano Lett. 8, 1649 (2008)

    Article  Google Scholar 

  16. D.S. Annis, D.F. Mosher, D.D. Roberts, Nat. Nanotechnol. 27, 339 (2009)

    Google Scholar 

  17. S. Singh, S.H. Park, Optik (Stuttg). 137, 96 (2017)

    Article  Google Scholar 

  18. A.A. Hussain, A.R. Pal, D.S. Patil, Org. Electron. 15, 2107 (2014)

    Article  Google Scholar 

  19. D.Y. Zhang, C.W. Ge, J.Z. Wang, T.F. Zhang, Y.C. Wu, F.X. Liang, Appl. Surf. Sci. 387, 1162 (2016)

    Article  Google Scholar 

  20. T. Barman, A.R. Pal, ACS Appl. Mater. Interfaces 7, 2166 (2015)

    Article  Google Scholar 

  21. M. Baro, A.A. Hussain, A.R. Pal, RSC Adv. 4, 46970 (2014)

    Article  Google Scholar 

  22. A.A. Hussain, A.R. Pal, D.S. Patil, Appl. Phys. Lett. 104, (2014)

  23. X. Feng, C. Mao, G. Yang, W. Hou, J.J. Zhu, Langmuir 22, 4384 (2006)

    Article  Google Scholar 

  24. Y. Qiao, C.M. Li, S.-J. Bao, Q.-L. Bao, J. Power Sources 170, 79 (2007)

    Article  Google Scholar 

  25. J. Zheng, X. Ma, X. He, M. Gao, G. Li, Procedia Eng. 27, 1478 (2012)

    Article  Google Scholar 

  26. X. Wang, K. Liu, X. Chen, B. Li, M. Jiang, Z. Zhang, H. Zhao, D. Shen, ACS Appl. Mater. Interfaces 9, 5574 (2017)

    Article  Google Scholar 

  27. K.W. Liu, M. Sakurai, M.Y. Liao, M. Aono, J. Phys. Chem. C 114, 19835 (2010)

    Article  Google Scholar 

  28. Y. Liu, X. Zhang, J. Su, H. Li, Q. Zhang, Y. Gao, Opt. Express 22, 30148 (2014)

    Article  Google Scholar 

  29. J.M. McMahon, S.K. Gray, G.C. Schatz, Phys.Chem.Chem.Phys 15, 51415 (2009)

    Google Scholar 

  30. P. Dou, Z. Cao, C. Wang, J. Zheng, X. Xu, Appl. Surf. Sci. 404, 342 (2017)

    Article  Google Scholar 

  31. C. Nayral, E. Viala, P. Fau, F. Senocq, J.C. Jumas, A. Maisonnat, B. Chaudret, Chem. - A Eur. J. 6, 4082 (2000)

    Article  Google Scholar 

  32. D.G. Hermans Sophie, R. Roberts, J.M. Thomas Brain, F.G. Johnson, G. Sarkar, Wiley 113, 1251 (2001)

  33. M.H. Bhagat, J. Nanosci. Curr. Res. 3, (2018)

  34. U. Backman, J.K. Jokiniemi, A. Auvinen, K.E.J. Lehtinen, J. Nanoparticle Res. 4, 325 (2002)

    Article  Google Scholar 

  35. R. Mueller, L. Mädler, S.E. Pratsinis, Chem. Eng. Sci. 58, 1969 (2003)

    Article  Google Scholar 

  36. A. Sobhani-nasab, M. Rahimi-nasrabadi, H. Reza, V. Pourmohamadian, F. Ahmadi, M. Reza, H. Ehrlich, Ultrason. - Sonochemistry 45, 189 (2018)

    Article  Google Scholar 

  37. H. Reza, A. Sobhani-nasab, M. Rahimi-nasrabadi, M. Reza, Appl. Surf. Sci. 423, 1025 (2017)

    Article  Google Scholar 

  38. M. Rahimi, N. Saeid, M. Kourosh, J. Mater. Sci. Mater. Electron. 28, 16133 (2017)

    Article  Google Scholar 

  39. S. Grimm, M. Schultz, S. Barth, R. Müller, J. Mater. Sci. 32, 1083 (1997)

    Article  Google Scholar 

  40. A. Tavakoli, M. Sohrabi, A. Kargari, Chem. Pap. 61, 151 (2007)

    Article  Google Scholar 

  41. A. Khoshroo, L. Hosseinzadeh, A. Sobhani-nasab, M. Rahimi-nasrabadi, J. Electroanal. Chem. 823, 61 (2018)

    Article  Google Scholar 

  42. J. Amani, M. Maleki, A. Khoshroo, A. Sobhani-nasab, M. Rahimi-nasrabadi, Anal. Biochem. 548, 53 (2018)

    Article  Google Scholar 

  43. H. Gu, R. Zheng, X.X. Zhang, B. Xu, J. Am. Chem. Soc. 126, 5664 (2004)

    Article  Google Scholar 

  44. B.C. Sih, M.O. Wolf, Chem. Commun. 27, 3375 (2005)

    Article  Google Scholar 

  45. J. Qu, Int. J. Electrochem. Sci. Int. J. Electrochem. Sci. 1106, 4389 (2016)

    Article  Google Scholar 

  46. S.S. Chee, J.H. Lee, Thin Solid Films 562, 211 (2014)

    Article  Google Scholar 

  47. Y.H. Jo, I. Jung, C.S. Choi, I. Kim, H.M. Lee, Nanotechnology 22, (2011)

  48. Y. Ju, T. Tasaka, H. Yamauchi, T. Nakagawa, Microsyst. Technol. 21, 1849 (2015)

    Article  Google Scholar 

  49. J. Xing, C. Zhao, E. Guo, F. Yang, IEEE Sens. J. 12, 2561 (2012)

    Article  Google Scholar 

  50. X. Gu, M. Zhang, F. Meng, X. Zhang, Y. Chen, S. Ruan, Appl. Surf. Sci. 307, 20 (2014)

    Article  Google Scholar 

  51. F. Molina-Lopez, D. Briand, N.F. De Rooij, Sensors Actuators, B Chem. 166–167, 212 (2012)

    Article  Google Scholar 

  52. M. Soni, T. Arora, R. Khosla, P. Kumar, A. Soni, S.K. Sharma, IEEE Sens. J. 16, 1524 (2016)

    Article  Google Scholar 

  53. F. Alexander, D.T. Price, S. Bhansali, J. Phys. Conf. Ser. 224, (2010)

  54. J.B.D. Soole, H. Schumacher, IEEE J. Quantum Electron. 27, 737 (1991)

    Article  Google Scholar 

  55. J. Hetterich, G. Bastian, N.A. Gippius, S.G. Tikhodeev, G. von Plessen, U. Lemmer, IEEE J. Quantum Electron. 43, 855 (2007)

    Article  Google Scholar 

  56. C.H. Lei, A. Das, M. Elliott, J.E. Macdonald, M.L. Turner, Synth. Met. 145, 217 (2004)

    Article  Google Scholar 

  57. J. Ferrer, J. Alonso, S. de Ávila, Sensors 14, 4484 (2014)

    Article  Google Scholar 

  58. J.W. Jeong, J.W. Huh, J.I. Lee, H.Y. Chu, J.J. Pak, B.K. Ju, Thin Solid Films 518, 6343 (2010)

    Article  Google Scholar 

  59. J.C. Carrano, T. Li, P.A. Grudowski, C.J. Eiting, R.D. Dupuis, J.C. Campbell, J. Appl. Phys. 83, 6148 (1998)

    Article  Google Scholar 

  60. C.D. Lokhande, S.S. Kale, U.S. Jadhav, B.G. Wagh, Thin Solid Films 277, 5 (1996)

    Article  Google Scholar 

  61. S.C.K. Misra, M.K. Ram, S.S. Pandey, B.D. Malhotra, S. Chandra, Appl. Phys. Lett. 61, 1219 (1992)

    Article  Google Scholar 

  62. M. Das, S. Sarmah, D. Sarkar, Superlattices Microstruct. 101, 228 (2017)

    Article  Google Scholar 

  63. C.Y. Tsay, P.H. Wu, Ceram. Int. 43, 11874 (2017)

    Article  Google Scholar 

  64. N.M. Abd-Alghafour, N.M. Ahmed, Z. Hassan, Sensors Actuators A Phys. 250, 250 (2016)

    Article  Google Scholar 

  65. V. Dhyani, S. Das, Semicond. Sci. Technol. 32, (2017)

  66. A.A. Ahmed, M. Devarajan, N. Afzal, Sensors Actuators, A Phys. 262, 78 (2017)

    Article  Google Scholar 

  67. H. Jiang, K.s. Moon, H. Dong, F. Hua, C.P. Wong, Chem. Phys. Lett. 429, 492 (2006)

    Article  Google Scholar 

  68. L. Tang, F. Duan, M. Chen, RSC Adv. 6, 65012 (2016)

    Article  Google Scholar 

  69. N. Arora, B.R. Jagirdar, Phys. Chem. Chem. Phys. 16, 11381 (2014)

    Article  Google Scholar 

  70. X. Feng, Y. Zhang, Z. Yan, Y. Ma, Q. Shen, X. Liu, Q. Fan, L. Wang, W. Huang, J. Solid State Electrochem. 18, 1717 (2014)

    Article  Google Scholar 

  71. S. Mubeen, G. Hernandez-Sosa, D. Moses, J. Lee, M. Moskovits, Nano Lett. 11, 5548 (2011)

    Article  Google Scholar 

  72. R. Guntner, U. Asawapirom, M. Forster, C. Schmitta, B. Stiller, B. Tiersch, A. Falcou, H.-G. Nothofer, U. Scherf, Thin Solid Films 417, 1 (2002)

    Article  Google Scholar 

Download references

Acknowledgements

The author S.S. would like to acknowledge the research fellowship from MHRD, Govt. of India. S.K.S acknowledge the financially support from Department of Science & Technology (DST), Govt. of India under TSG (Advanced Manufacturing Technology) Program with Ref. No DST/TSG/AMT/2015/634 for this work. S.D. acknowledges the support of Science and Engineering Research Board with the file no. PDF/2016/003135. Authors also acknowledge the Centre for Design and Fabrication of Electronic Devices (C4DFED), Indian Institute of Technology (IIT) Mandi, Mandi, Himachal Pradesh, India for use of various experimental and charactrization facilities.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hitesh Shrimali or Satinder K. Sharma.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, S., Das, S., Khosla, R. et al. Highly UV sensitive Sn nanoparticles blended with polyaniline onto micro-interdigitated electrode array for UV-C detection applications. J Mater Sci: Mater Electron 30, 7534–7542 (2019). https://doi.org/10.1007/s10854-019-01067-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-01067-9

Navigation