Skip to main content
Log in

Influence of Cr3+ doping on multiferroic properties in the morphotropic phase boundary compositions of BiFeO3–PbTiO3 system

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this paper, we have investigated the effect of Cr3+ substitution on the crystal structure, microstructure, dielectric and magnetic behavior of the morphotropic phase boundary (MPB) composition of the multiferroic ceramic 0.675BiFe(1−x)CrxO3–0.325PbTiO3 (x = 0, 0.02 and 0.05). The average grain size of the specimens increased from ~ 150 nm for x = 0 to 470 nm for x = 0.05. Rietveld refinement analysis of the X-Ray powder diffraction patterns confirmed the coexistence of multiphase i.e. monoclinic Cc and tetragonal P4 mm polymorphs for all the compositions. The system exhibits weak ferromagnetism for x = 0.05. We estimated the magnetoelectric interaction constant (γ ~ 0.31) for x = 0.05 by Ginzburg–Landau theory. The value of magnetoelectric coupling coefficient (\(\alpha_{ME}\)) is found to be 0.054 mV/cm-Oe, 0.073 mV/cm-Oe, 0.133 mV/cm-Oe for x = 0, 00.02 and 0.05, respectively. High temperature dielectric data also reveals that Curie temperature decreases with increasing Cr3+ concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. W. Eerenstein, N.D. Mathur, J.F. Scott, Nature 442, 759–765 (2006)

    Article  Google Scholar 

  2. S. Fusil, V. Garcia, A. Barthelemy, M. Bibes, Annu. Rev. Mater. Res. 44, 91–116 (2014)

    Article  Google Scholar 

  3. M. Bibes, A. Barthelemy, Nat. Mater. 7, 425–426 (2008)

    Article  Google Scholar 

  4. S.W. Cheong, M. Mostovoy, Nat. Mater. 6, 13–20 (2007)

    Article  Google Scholar 

  5. T. Kimura, Annu. Rev. Condens. Matter Phys. 3, 93–110 (2013)

    Article  Google Scholar 

  6. N.C. Bristowe, J. Varignon, D. Fontaine, E. Bousquet, Ph Ghosez, Nat. Commun. 6, 6677 (2015)

    Article  Google Scholar 

  7. J.F. Scott, J. Mater. Chem. 22, 4567–4574 (2012)

    Article  Google Scholar 

  8. P. Ravindran, R. Vidaya, O. Eriksson, H. Fjellvag, Adv. Mater. 20, 1353–1356 (2008)

    Article  Google Scholar 

  9. G. Catalan, J.F. Scott, Adv. Mater. 21, 2463–2485 (2009)

    Article  Google Scholar 

  10. D. Rahmedov, D. Wang, J. Iniguez, L. Bellaiche, Phys. Rev. Lett. 109, 037207 (2012)

    Article  Google Scholar 

  11. S. Chauhan, M. Kumara, S. Chhokera, S.C. Katyal, H. Singh, M. Jewariya, K.L. Yadav, Solid State Commun. 152, 525–529 (2012)

    Article  Google Scholar 

  12. M.S. Bernardo, T. Jardiel, M. Peiteado, F.J. Mompean, M. Garcia-Hernandez, M.A. Garcia, M. Villegas, A.C. Caballero, Chem. Mater. 25(9), 1533–1541 (2013)

    Article  Google Scholar 

  13. V.A. Reddy, N.P. Pathak, R. Nath, Solid State Commun. 171, 40–45 (2013)

    Article  Google Scholar 

  14. P. Kharel, S. Talebi, B. Ramachandran, A. Dixit, V.M. Naik, M.B. Sahana, C. Sudakar, R. Naik, M.S.R. Rao, G. Lawes, J. Phys. 21, 036001 (2009)

    Google Scholar 

  15. H. Deng, H. Deng, P. Yang, J. Chu, J. Mater. Sci. 23, 1215–1218 (2012)

    Google Scholar 

  16. F. Chang, N. Zhang, F. Yang, S. Wang, G. Song, J. Phys. D 40, 24 (2007)

    Google Scholar 

  17. J.K. Kim, S.S. Kim, W.-J. Kim, Appl. Phys. Lett. 88(132901), 1–3 (2006)

    Google Scholar 

  18. S.M. Wu et al., Nat. Mater. 9, 756–761 (2010)

    Article  Google Scholar 

  19. D. Sando, A. Barthelemy, M. Bibes, J. Phys. 26, 473201 (2014)

    Google Scholar 

  20. A. Kumar et al., J. Phys. 21, 382204 (2009)

    Google Scholar 

  21. J.F. Scott, NPG Asia Mater. 5(e72), 1–11 (2013)

    Google Scholar 

  22. D. Evans et al., Nat. Commun. 4, 1534 (2013)

    Article  Google Scholar 

  23. L. Keeney et al., J. Am. Ceram. Soc. 96, 2339–2357 (2013)

    Article  Google Scholar 

  24. K. Oka et al., Int. Ed. 51, 7977–7980 (2012)

    Article  Google Scholar 

  25. R. Guo et al., Phys. Rev. Lett. 84, 5423 (2000)

    Article  Google Scholar 

  26. D. Damjanovic, I.E.E.E. Trans, Ultrason. Ferroelectr. Freq Control 56, 1574–1585 (2009)

    Article  Google Scholar 

  27. J.C. Wojdel, J. Iniguez, Phys. Rev. Lett. 105(3), 037208 (2010)

    Article  Google Scholar 

  28. W.M. Zhu, H.Y. Guo, Z.G. Ye, Phys. Rev. B 78, 014401 (2008)

    Article  Google Scholar 

  29. T.P. Comyn et al., Appl. Phys. Lett. 93, 232901 (2008)

    Article  Google Scholar 

  30. M. Yashima, K. Omoto, J. Chen, H. Kato, X. Xing, Chem. Mater. 23, 3135 (2011)

    Article  Google Scholar 

  31. V. Kothai, A. Senyshynand, R. Ranjan, J. Appl. Phys. 113(8), 084102 (2013)

    Article  Google Scholar 

  32. Carvajal RJ, FullPROF A (2011) Rietveld refinement and pattern matching analysis program laboratories. Leon Brillouin [CEA-CNRS], France

  33. D.I. Woodward, I.M. Reaney, R.E. Eitel, C.A. Randall, J. Appl. Phys. 94, 3313 (2003)

    Article  Google Scholar 

  34. S. Bhattacharjee, D. Pandey, J. Appl. Phys. 107, 124112 (2010)

    Article  Google Scholar 

  35. Y.M. Jin, Y.U. Wang, A.G. Khachaturyan, J.F. Li, D. Viehland, Phys. Rev. Lett. 91, 197601 (2003)

    Article  Google Scholar 

  36. H. Amorin et al., J. Appl. Phys. 115, 104104 (2014)

    Article  Google Scholar 

  37. S. Bhattacharje, K. Taji, C. Moriyoshi, Y. Kuroiwa, D. Pandey, Phys. Rev. B 84, 104116 (2011)

    Article  Google Scholar 

  38. S.S. Arafat, S. Ibrahim, Mater. Sci. Appl. 8, 716–725 (2017)

    Google Scholar 

  39. V.F. Freitas et al., J. Am. Ceram. Soc. 94, 754–758 (2011)

    Article  Google Scholar 

  40. J.B. Li, G.H. Rao, J.K. Liang, Y.H. Liu, J. Luo, J.R. Chen, Appl. Phys. Lett. 90, 162513 (2007)

    Article  Google Scholar 

  41. C.A. Randall, A.S. Bhalla, Jpn. J. Appl. Phys. 29(2R), 327 (1990)

    Article  Google Scholar 

  42. Chikazumi S, Ohta K, Adachi K, Tsuya N, Ishikawa Y (1975) Asakura-syoten, Tokyo (in Japanese), p 63

  43. S. Layek, S. Saha, H.C. Verma, AIP Adv. 3, 032140 (2013)

    Article  Google Scholar 

  44. K.C. Verma, J. Shah, R.K. Kotnala, J. Nanosci. Nanotechnol. 15, 1587–1590 (2015)

    Article  Google Scholar 

  45. A. Kumar, K.L. Yadav, Mater. Sci. Eng. 176, 227–230 (2011)

    Article  Google Scholar 

  46. M.M. Kumar, A. Srinivas, S.V. Suryanarayana, G.S. Kumar, T. Bhimasankaran, Bull. Mater. Sci. 21, 251–255 (1998)

    Article  Google Scholar 

  47. M. Kumar, K.L. Yadav, J. Phys. Chem. Solids 68, 1791–1795 (2007)

    Article  Google Scholar 

  48. R. Grossinger, G.V. Duong, R.S. Turtelli, J. Magn. Magn. Mater. 320, 1972–1977 (2008)

    Article  Google Scholar 

Download references

Acknowledgements

Sanjeev Kumar is thankful to Punjab Engineering College (Deemed to be University), Chandigarh for providing financial assistance in the form of RIPA project. Sanjeev Kumar and Naveen Kumar are thankful to NRC-M (Materials Engineering, IISc, Bengaluru) for carrying out characterization work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjeev Kumar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, N., Narayan, B., Mehrotra, T. et al. Influence of Cr3+ doping on multiferroic properties in the morphotropic phase boundary compositions of BiFeO3–PbTiO3 system. J Mater Sci: Mater Electron 30, 16539–16547 (2019). https://doi.org/10.1007/s10854-019-02030-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-02030-4

Navigation