Skip to main content
Log in

Electrodeposition and texture control of Ag-doped SnS thin films with high-electrical transmission properties

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

SnS is widely noticed in optoelectronics and thermoelectric fields. But the low-electrical transmission performance confines its actual application. In this paper, Ag-doped SnS thin films were successfully prepared by a sample electrodeposition method. The mechanism of the S and Sn co-deposition and the effect of complexing agent K4P2O7 were studied. The Ag content was successfully controlled by the adjustment of the electrolyte and deposition parameters. The b-axis texture was strengthened by Cetyl trimethyl ammonium bromide (CTAB) in the electrolyte. The carrier concentration was promoted by the control of Ag content and the carrier mobility was promoted by the strengthening of the b-axis texture. The electrical conductivity was promoted by the combination of the Ag concentration control and b-axis texture control. It reached the highest known value of 1.40 S cm−1 under the highest b-axis texture coefficient. Such a sample combination method and control strategies provide a new view for the preparation of semiconductors with high-electrical transmission properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. F. Jiang, H. Shen, W. Wang, L. Zhang, J. Electrochem. Soc. 159, 235 (2012)

    Article  Google Scholar 

  2. J. Xu, Y. Yang, Z. Xie, J. Mater. Sci: Mater Electron. 25, 3028 (2014)

    CAS  Google Scholar 

  3. M. Kul, J. Vacuum 107, 213 (2014)

    Article  CAS  Google Scholar 

  4. M. Seal, N. Singh, E.W. McFarland, J. Baltrusaitis, J. Phys. Chem. C 119, 6471 (2015)

    Article  CAS  Google Scholar 

  5. L.D. Zhao, S.H. Lo, Y. Zhang, H. Sun, G. Tan, C. Uher, C. Wolverton, V.P. Dravid, M.G. Kanatzidis, Nature 508, 373 (2014)

    Article  CAS  Google Scholar 

  6. L.D. Zhao, G. Tan, S. Hao, J. He, Y. Pei, H. Chi, H. Wang, S. Gong, H. Xu, V.P. Dravid, C. Uher, G.J. Snyder, C. Wolverton, M.G. Kanatzidis, Science 351, 141 (2016)

    Article  CAS  Google Scholar 

  7. B.Z. Sun, Z.J. Ma, C. He, K.C. Wu, RSC. Adv. 5, 56382 (2015)

    Article  CAS  Google Scholar 

  8. S. Gedi, V.R.M. Reddy, T.R.R. Kotte, S.H. Kim, C.W. Jeon, Ceram. Int. 42, 19027 (2016)

    Article  CAS  Google Scholar 

  9. V. Steinmann, R.E. Brandt, R. Chakraborty, R. Jaramillo, M. Young, B.K. Ofori-Okai, C. Yang, A. Polizzotti, K.A. Nelson, R.G. Grodon, T. Buonassisi, APL. Mater. 4, 026103 (2016)

    Article  Google Scholar 

  10. H. Kafashan, R.E. Kahrizsangi, F.J. Sheini, R. Yousefi, Phys. Status Solidi A 213, 1302 (2016)

    Article  CAS  Google Scholar 

  11. S. Hao, V.P. Dravid, M.G. Kanatzidis, C. Wolverton, APL Mater. 4, 104505 (2016)

    Article  Google Scholar 

  12. Y. Liu, K. Cao, J. Liu, Z. Zhang, J. Ji, F. Wang, Z. Li, J. Mater. Sci: Mater. Electron. 30, 15880 (2019)

    CAS  Google Scholar 

  13. M.A. Almessiere, A.L. Al-Otaibi, I.B. Assaker, T. Ghrib, R. Chtourou, Mater. Sci. Semicond. Process. 40, 267 (2015)

    Article  Google Scholar 

  14. D. Kong, H. Wang, J.J. Cha, M. Pasta, K.J. Koski, J. Yao, Y. Cui, Nano Lett. 13, 1341 (2013)

    Article  CAS  Google Scholar 

  15. S.M. Herron, J.T. Tanskanen, K.E. Roelofs, S.F. Bent, Chem. Mater. 26, 7106 (2014)

    Article  CAS  Google Scholar 

  16. L. Yeh, K. Cheng, J. Power Sources 275, 750 (2015)

    Article  CAS  Google Scholar 

  17. Q. Tan, L.D. Zhao, J.F. Li, C.F. Wu, T.R. Wei, Z.B. Xing, M.G. Kanatzidis, J. Mater. Chem. A. 2, 17302 (2014)

    Article  CAS  Google Scholar 

  18. K.S. Kumar, A.G. Manohari, S. Dhanapandian, T. Mahalingam, Mater. Lett. 131, 167 (2014)

    Article  CAS  Google Scholar 

  19. H.J. Jia, S.Y. Cheng, X.K. Wu, Y.L. Yang, Nat. Sci. 2, 197 (2010)

    CAS  Google Scholar 

  20. C. An, K. Tang, Y. Jin, Q. Liu, X. Chen, Y. Qian, J. Cryst. Growth 252, 581 (2003)

    Article  CAS  Google Scholar 

  21. A. Tang, J. Liu, M. Dou, Z. Li, F. Wang, Appl. Surf. Sci. 383, 253 (2017)

    Article  Google Scholar 

  22. J. Fang, Plating Compound: Theory and Application, 1st edn. (Chemical Industry Press Co. Ltd., Beijing, 2008), pp. 347–349 (in Chinese)

    Google Scholar 

  23. A. Adam, S. Verma, G. Seth, Eur. J. Chem. 8, 404 (2011)

    Google Scholar 

  24. X. Xu, F. Wang, J. Liu, J. Ji, Electrochim. Acta 55, 4428 (2010)

    Article  CAS  Google Scholar 

  25. B.H. Baby, D.B. Mohan, Sol. Energy. 174, 373 (2018)

    Article  CAS  Google Scholar 

  26. B.H. Baby, D.B. Mohan, Sol. Energy. 189, 207 (2019)

    Article  CAS  Google Scholar 

  27. B.H. Baby, D.B. Mohan, Sol. Energy. 193, 61 (2019)

    Article  Google Scholar 

  28. Z. Li, Material Physics, 2nd ed. (Chemical Industry Press Co. Ltd, 2015), pp. 154 (in Chinese)

    Google Scholar 

  29. M. Devika, N.K. Reddy, K. Ramesh, K.R. Gunasekhar, E.S.R. Gopal, K.T R. Reddy, J. Electrochem. Soc. 153, 727 (2006)

    Article  Google Scholar 

  30. P. Lu, H. Jia, S. Cheng, Adv. Mater. Res. 60, 11 (2009)

    Article  Google Scholar 

  31. H. Jia, S. Cheng, P. Lu, Adv. Mater. Res. 152, 752 (2011)

    Google Scholar 

Download references

Acknowledgement

The authors acknowledge the financial support from National Natural Science Foundation of China (Grant No. 51472020).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhilin Li or Feng Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, S., Liu, Y., Liu, J. et al. Electrodeposition and texture control of Ag-doped SnS thin films with high-electrical transmission properties. J Mater Sci: Mater Electron 31, 2854–2861 (2020). https://doi.org/10.1007/s10854-019-02829-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-02829-1

Navigation