Skip to main content
Log in

Phase evolution and microwave dielectric properties of the Li2(1+x)ZnGe3O8 spinel oxides

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Recently, there have been considerable interests in the Li-containing spinel oxides as promising microwave dielectric materials. Li loss at elevated temperatures, however, is known to be inevitable, resulting in deterioration on dielectric performances. Here the influence of Li nonstoichiometry on the microwave dielectric properties of Li2ZnGe3O8, a spinel oxide, was reported. An appropriate level of Li excess enhanced the densification of Li2ZnGe3O8 and increased dielectric performances. In contrast, high level of Li excess induced the formation of the secondary phase of Li2ZnGeO4 confirmed by XRD and Raman spectra, which in turn lowered the dielectric properties. Typically, a composition with x = 0.075, in the Li2(1+x)ZnGe3O8 ceramics exhibited the enhanced microwave dielectric properties with εr = 10.68, Q × f = 77,300 GHz (at 13.3 GHz), and τf = − 70.35 ppm/°C when sintered at 940 °C for 4 h. Moreover, these compounds have well chemical compatibility with the silver electrodes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. J.G. Cheng, P.L. Li, Z.J. Wang, Z.L. Li, M.M. Tian, C. Wang, Z.P. Yang, Color selective manipulation in Li2ZnGe3O8: Mn2+ by multiple-cation substitution on different crystal-sites. Dalton Trans. 47, 4293–4300 (2018)

    CAS  Google Scholar 

  2. B.J. Kwon, K.C. Lau, H. Park, Y.A. Wu, K.L. Hawthorne, H.F. Li, S. Kim, I.L. Bolotin, T.T. Fister, P. Zapol, R.F. Klie, J. Cabana, C. Liao, S.H. Lapidus, B. Key, J.T. Vaughey, Probing electrochemical Mg-ion activity in MgCr2–xVxO4 spinel oxides. Chem. Mater. 32, 1162–1171 (2020)

    CAS  Google Scholar 

  3. S.K. Abbasa, G.M. Mustafaa, M. Saleemb, A. Mahmoodc, S.M. Ramayd, S. Atiqa, S. Naseem, Morphologically controlled dielectric dispersion and energy density optimization in Co/Ni spinel ferrites. Ceram. Int. 46, 9765–9772 (2020)

    Google Scholar 

  4. X.C. Lu, W.J. Bian, Y.Y. Li, H.K. Zhu, Z.X. Fu, Q.T. Zhang, Influence of inverse spinel structured CuGa2O4 on microwave dielectric properties of normal spinel ZnGa2O4 ceramics. J. Am. Ceram. Soc. 101, 1646–1654 (2018)

    CAS  Google Scholar 

  5. W.H. Bragg, D. Sc, FRS, The structure of the spinel group of crystals. Lond. Edinb. Dublin Philos. Mag. J. Sci. 30, 305–315 (1915)

    CAS  Google Scholar 

  6. S. Nishikawa, Structure of some crystals of spinel group. Proc. Tokyo Math. Phys. Soc. 8, 199–209 (1915)

    CAS  Google Scholar 

  7. K.E. Sickafus, J.M. Wills, N.W. Grimes, Structure of spinel. J. Am. Ceram. Soc. 82, 3279–3292 (1999)

    CAS  Google Scholar 

  8. N. Reeves-McLaren, R.I. Smith, A.R. West, Lithium-ion conduction pathways in complex lithium spinels Li2MGe3O8 (M = Ni or Zn). Chem. Mater. 23, 3556–3563 (2011)

    CAS  Google Scholar 

  9. J.G. Cheng, P.L. Li, Z.J. Wang, Y.S. Sun, Q.Y. Bai, Z.L. Li, M.M. Tian, C. Wang, Z.P. Yang, Synthesis, structure and luminescence properties of novel NIR luminescent materials Li2ZnGe3O8:xMn2+. J. Mater. Chem. C. 5, 127–133 (2017)

    CAS  Google Scholar 

  10. L. He, D. Zhou, F. Xiang, P.P. Chang, Y. Li, H. Wang, A novel magnetodielectric solid solution ceramic 0.4LiFe5O8–0.6Li2MgTi3O8 with excellent microwave dielectric properties. J. Am. Ceram. Soc. 96, 3027–3030 (2013)

    CAS  Google Scholar 

  11. B.N. Rao, O. Padmaraj, D. Narsimulu, M. Venkateswarlu, N. Satyanarayana, AC conductivity and dielectric properties of spinel LiMn2O4 nanorods. Ceram. Int. 41, 14070–14077 (2015)

    Google Scholar 

  12. T.H. Dolla, K. Pruessner, D.G. Billing, C. Sheppard, A. Prinsloo, E. Carleschi, B. Doyle, Patrick Ndungu aSol-gel synthesis of MnxNi1–xCo2O4 spinel phase materials: Structural, electronic, and magnetic properties. J. Alloys Compd. 742, 78–89 (2018)

    CAS  Google Scholar 

  13. M.K. Zitani, T. Ebadzadeh, S. Banijamali, R. Riahifar, C. Rüsselb, T. Zscheckel, H.S. Ren, Microstructural and microwave dielectric properties of LZT(Li2ZnTi3O8) ceramics sintered in presence of bismuth borate glass for LTCC applications. Ceram. Int. 44, 4016–4026 (2018)

    CAS  Google Scholar 

  14. X.P. Lu, Y. Zheng, Q. Huang, Z.W. Dong, Structural dependence of microwave dielectric properties of spinel-structured Li2ZnTi3O8 ceramic: crystal structure refinement and raman spectroscopy study. J. Electron. Mater. 45, 940–946 (2016)

    CAS  Google Scholar 

  15. Z.F. Li, H. Li, Y.H. Cui, Z.G. Du, Y.H. Ma, Z.Y. Tang, Li2MoO4 modified Li2ZnTi3O8 as a high property anode material for lithium ion battery. J. Alloys Compd. 692, 131–139 (2017)

    CAS  Google Scholar 

  16. S. Wang, Y.F. Bi, L.J. Wang, Z.H. Meng, B.M. Luo, Mo-doped Li2ZnTi3O8 @ graphene as a high performance anode material for lithium-ion batteries. Electrochim. Acta 301, 319–324 (2019)

    CAS  Google Scholar 

  17. S. George, M.T. Sebastian, Synthesis and microwave dielectric properties of novel temperature stable high Q, Li2ATi3O8 (A = Mg, Zn) ceramics. J. Am. Ceram. Soc. 93, 2164–2166 (2010)

    CAS  Google Scholar 

  18. L. Fang, D.J. Chu, H.F. Zhou, X.L. Chen, Z. Yang, Microwave dielectric properties and low temperature sintering behavior of Li2CoTi3O8 ceramic. J. Alloys Compd. 509, 1880–1884 (2011)

    CAS  Google Scholar 

  19. H. Luo, L. Fang, H.C. Xiang, Y. Tang, C.C. Li, Two novel low-firing germanates Li2MGe3O8 (M = Ni, Co) microwave dielectric ceramics with spinel structure. Ceram. Int. 43, 1622–1627 (2017)

    CAS  Google Scholar 

  20. J.L. Ma, Z.F. Fu, P. Liu, B. Wang, Y. Li, Microwave dielectric properties of low-fired Li2TiO3–MgO ceramics for LTCC applications. Mater. Sci. Eng. B 204, 15–19 (2016)

    CAS  Google Scholar 

  21. H. Wang, H. Yang, J.X. Tong, Q.L. Zhang, Medium dielectric constant and low-loss PTFE composites filled with MgO‐LiF co‐doped Li2TiO3 particles. J. Appl. Polym. Sci. 136, 47980 (2019)

    Google Scholar 

  22. Y.D. Zhang, D. Zhou, Pseudo phase diagram and microwave dielectric properties of Li2O–MgO–TiO2 ternary system. J. Am. Ceram. Soc. 99, 3645–3650 (2016)

    CAS  Google Scholar 

  23. H.C. Xiang, L. Fang, W.S. Fang, Y. Tang, C.C. Li, A novel low-firing microwave dielectric ceramic Li2ZnGe3O8 with cubic spinel structure. J. Eur. Ceram. Soc. 37, 625–629 (2017)

    CAS  Google Scholar 

  24. P. Moradi, E. Taheri-Nassaj, H. Taghipour-Armaki, Effect of zinc ions non-stoichiometry on the microstructure and microwave dielectric properties of Li2ZnTi3O8 ceramics. J. Alloys Compd. 695, 3772–3778 (2017)

    CAS  Google Scholar 

  25. Y.Z. Hao, Q.L. Zhang, J. Zhang, C.R. Xin, H. Yang, Enhanced sintering characteristics and microwave dielectric properties of Li2TiO3 due to nano-size and nonstoichiometry effect. J. Mater. Chem. 22, 23885–23892 (2012)

    CAS  Google Scholar 

  26. R.D. Shannon, Dielectric polarizabilities of ions in oxides and fluorides. J. Appl. Phys. 73, 348–366 (1993)

    Google Scholar 

  27. S. George, P.S. Anjana, V.N. Deepu, P. Mohanan, M.T. Sebastian, Low-temperature sintering and microwave dielectric properties of Li2MgSiO4 ceramics. J. Am. Ceram. Soc. 92, 1244–1249 (2009)

    CAS  Google Scholar 

  28. H.C. Xiang, L. Fang, X.W. Jiang, C.C. Li, Low-firing and microwave dielectric properties of Na2YMg2V3O12 ceramic. Ceram. Int. 42, 3701–3705 (2016)

    CAS  Google Scholar 

  29. S.H. Yoon, D.W. Kim, S.Y. Cho, K.S. Hong, Investigation of the relations between structure and microwave dielectric properties of divalent metal tungstate compounds. J. Eur. Ceram. Soc. 26, 2051–2054 (2006)

    CAS  Google Scholar 

  30. H.J. Lee, K.S. Hong, S.J. Kim, I.T. Kim, Dielectric properties of MNb2O6 compounds (where M = Ca, Mn, Co, Ni, or Zn). Mater. Res. Bull. 32, 847–855 (1997)

    CAS  Google Scholar 

  31. L. Aldon, P. Kubiak, M. Womes, J.C. Jumas, J. Olivier-Fourcade, J.L. Tirado, J.I. Corredor, C. Pe´rez Vicente, Chemical and electrochemical Li-insertion into the Li4Ti5O12 spinel. Chem. Mater. 16, 5721–5725 (2004)

    CAS  Google Scholar 

  32. K. Xiao, Y. Tang, Y.F. Tian, C.C. Li, L. Duan, L. Fang, Enhancement of the cation order and the microwave dielectric properties of Li2ZnTi3O8 through composition modulation. J. Eur. Ceram. Soc. 39, 3064–3069 (2019)

    CAS  Google Scholar 

  33. D.L. Rousseau, R.P. Bauman, S. Porto, Normal mode determination in crystals. J. Raman. Spectrosc. 10, 253–290 (1981)

    CAS  Google Scholar 

  34. T. Omata, M. Kita, K. Nose, K. Tachibana, S. Otsuka-Yao-Matsuo, Li2ZnGaO4, wurtzite-derived wide band gap oxide. Jpn. J. Appl. Phys. 50, 031102 (2011)

    Google Scholar 

  35. A. Yokoi, H. Ogawa, A. Kan, Y. Nakamura, Relationship between crystal structure and microwave dielectric properties of melilite-type ceramic. J. Eur. Ceram. Soc. 27, 2989–2993 (2007)

    CAS  Google Scholar 

  36. T. Tsunookaa, M. Androua, Y. Higashidaa, H. Sugiurab, H. Ohsato, Effects of TiO2 on sinterability and dielectric properties of high-Q forsterite ceramics. J. Eur. Ceram. Soc. 23, 2573–2578 (2003)

    Google Scholar 

  37. Y.P. Guo, H. Ohsato, K. Kakimoto, Characterization and dielectric behavior of willemite and TiO2-doped willemite ceramics at millimeter-wave frequency. J. Eur. Ceram. Soc. 26, 1827–1830 (2006)

    CAS  Google Scholar 

  38. J. Zhang, R.Z. Zuo, Effect of ordering on the microwave dielectric properties of spinel-structured (Zn1–x2/31/3TiO4 ceramics. J. Am. Ceram. Soc. 99, 3343–3349 (2016)

    CAS  Google Scholar 

  39. A. Belous, O. Ovchar, D. Durilin, M.M. Krzmanc, M. Valant, D. Suvorov, High-Q microwave dielectric materials based on the spinel Mg2TiO4. J. Am. Ceram. Soc. 89, 3441–3445 (2006)

    CAS  Google Scholar 

  40. W. Lei, W.Z. Lu, J.H. Zhu, X.H. Wang, Microwave dielectric properties of ZnAl2O4-TiO2 spinel-based composites. Mater. Lett. 61, 4066–4069 (2007)

    CAS  Google Scholar 

  41. K.P. Surendran, P.V. Bijumon, P. Mohanan, M.T. Sebastian, (1 – x)MgAl2O4-xTiO2 dielectrics for microwave and millimeter wave applications. Appl. Phys. A 81, 823–826 (2005)

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of China (Nos. 21761008 and 21965009), the Natural Science Foundation of Guangxi Zhuang Autonomous Region (Nos. 2018GXNSFAA138175 and 2018GXNSFBA281093), and Projects of Department of Science and Technology of Guangxi (Nos. AA18118008, AA18118034 and AA18118023) and Guilin (No. 20170225), Projects of Department of Education of Guangxi (No. 2018Ky0255).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang, W., Ao, L., Tang, Y. et al. Phase evolution and microwave dielectric properties of the Li2(1+x)ZnGe3O8 spinel oxides. J Mater Sci: Mater Electron 31, 13496–13502 (2020). https://doi.org/10.1007/s10854-020-03904-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-03904-8

Navigation