Skip to main content
Log in

Highly crystalline metal oxide thin films on plastic substrates prepared via firing and transfer: key role of the “lost” organic underlayer

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Our sol–gel transfer technique realizes highly crystalline metal oxide thin films on plastic substrates. In that technique a precursor gel film is fired at temperatures as high as 700 °C on an organic underlayer that is deposited beforehand on a single crystal silicon substrate. The resultant crystalline oxide film is transferred to a plastic substrate by heating the film on a hot plate and pressing a plastic substrate on it. The organic underlayer, which is completely lost during firing, critically facilitates the oxide film delamination from the silicon substrate. In order to answer the question how such a “lost” organic underlayer could be the key for the transfer, the effect of the underlayer thickness on the oxide film transferrability was investigated. Titania and zinc oxide precursor films were prepared by spin-coating on polyimide-polyvinylpyrrolidone and polyimide layers on Si(100) substrates, respectively, followed by firing and transfer to polycarbonate (PC) substrates. Quantitative evaluation based on image analysis demonstrated that thicker “lost” underlayers result in larger area fractions of the successfully transferred oxide films. Depth profile analyses by X-ray photoelectron spectroscopy excluded the residual carbon at the film/Si(100) interface as the delamination facilitator. On the other hand, atomic force microscopic observations demonstrated that thicker “lost” underlayers create larger surface roughness on both sides of the oxide films. It was concluded that such an increase in roughness decreased the contact area and brought the anchoring effect, reducing and increasing the film/Si(100) and film/PC adhesions, respectively, which facilitates the film transfer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. R.H. Reuss, B.R. Chalamala, A. Moussessian, M.G. Kane, A. Kumar, D.C. Zhang, J.A. Rogers, M. Hatalis, D. Temple, G. Moddel, B.J. Eliasson, M.J. Estes, J. Kunze, E.S. Handy, E.S. Harmon, D.B. Salzman, J.M. Woodall, M.A. Alam, J.Y. Murthy, S.C. Jacobsen, M. Olivier, D. Markus, P.M. Campbell, E. Snow, Macroelectronics: perspectives on technology and applications. Proc. IEEE 93, 1239–1256 (2005). https://doi.org/10.1109/JPROC.2005.851237

    Article  CAS  Google Scholar 

  2. Y. Sun, J.A. Rogers, Inorganic semiconductors for flexible electronics. Adv. Mater. 19, 1897–1916 (2007). https://doi.org/10.1002/adma.200602223

    Article  CAS  Google Scholar 

  3. S. Sobajima, H. Okaniwa, N. Takagi, I. Sugiyama, K. Chiba, Production and properties of transparent electroconductive coating on polyester film. Jpn. J. Appl. Phys. 13, 475–478 (1974). https://doi.org/10.7567/JJAPS.2S1.475

    Article  Google Scholar 

  4. K. Itoyama, Properties of Sn-doped indium oxide coatings deposited on polyester film by high rate reactive sputtering. J. Electrochem. Soc. 126, 691–694 (1979). https://doi.org/10.1149/1.2129111

    Article  CAS  Google Scholar 

  5. R.P. Howson, J.N. Avaratsiotis, M.I. Ridge, C.A. Bishop, Properties of conducting transparent oxide films produced by ion plating onto room-temperature substrates. Appl. Phys. Lett. 35, 161–162 (1979). https://doi.org/10.1063/1.91065

    Article  CAS  Google Scholar 

  6. A.W. Ott, R.P.H. Chang, Atomic layer-controlled growth of transparent conducting ZnO on plastic substrates. Mater. Chem. Phys. 58, 132–138 (1999). https://doi.org/10.1016/S0254-0584(98)00264-8

    Article  CAS  Google Scholar 

  7. B.A. Latella, G. Triani, Z. Zhang, K.T. Short, J.R. Bartlett, M. Ignat, Enhanced adhesion of atomic layer deposited titania on polycarbonate substrates. Thin Solid Films 515, 3138–3145 (2007). https://doi.org/10.1016/j.tsf.2006.08.022

    Article  CAS  Google Scholar 

  8. Y.C. Chen, C.F. Yang, E.Y. Hsueh, The application of AZOY transparent conductive oxide film in multifilm-coated polycarbonate optical glasses. J. Electrochem. Soc. 157, H987–H990 (2010). https://doi.org/10.1149/1.3474239

    Article  CAS  Google Scholar 

  9. D. Kim, Deposition of indium tin oxide films on polycarbonate substrates by direct metal ion beam deposition, Appl. Surf. Sci. 218 (2003) 70–77, https://doi.org/10.1116/1.1605430

    Article  CAS  Google Scholar 

  10. H. Kim, J.S. Horwitz, G.P. Kushto, Z.H. Kafafi, D.B. Chrisey, Indium tin oxide thin films grown on flexible plastic substrates by pulsed-laser deposition for organic light-emitting diodes. Appl. Phys. Lett. 79, 284–286 (2001). https://doi.org/10.1063/1.1383568

    Article  CAS  Google Scholar 

  11. A. Miyake, T. Yamada, H. Makino, N. Yamamoto, T. Yamamoto, Properties of highly transparent conductive Ga-doped ZnO films prepared on polymer substrates by reactive plasma deposition with DC arc discharge. J. Photopolym. Sci. Technol. 22, 497–502 (2009). https://doi.org/10.2494/photopolymer.22.497

    Article  CAS  Google Scholar 

  12. N. Al-Dahoudi, H. Bisht, C. Göbbert, T. Krajewski, M.A. Aegerter, Transparent conducting, anti-static and anti-static–anti-glare coatings on plastic substrates. Thin Solid Films 392, 299–304 (2001). https://doi.org/10.1016/S0040-6090(01)01047-1

    Article  CAS  Google Scholar 

  13. K. Shimizu, H. Imai, H. Hirashima, K. Tsukuma, Low-temperature synthesis of anatase thin films on glass and organic substrates by direct deposition from aqueous solutions. Thin Solid Films 351, 220–224 (1999). https://doi.org/10.1016/S0040-6090(99)00084-X

    Article  CAS  Google Scholar 

  14. M. Langlet, A. Kim, M. Audier, J.M. Herrmann, Sol–gel preparation of photocatalytic TiO2 films on polymer substrates. J. Sol–Gel Sci. Technol. 25, 223–234 (2002). https://doi.org/10.1023/A:1020259911650

    Article  CAS  Google Scholar 

  15. A. Matsuda, T. Matoda, T. Kogure, K. Tadanaga, T. Minami, M. Tatsumisago, Formation of anatase nanocrystals-precipitated silica coatings on plastic substrates by the sol–gel process with hot water treatment. J. Sol–Gel Sci. Technol. 27, 61–69 (2003). https://doi.org/10.1023/A:1022632027151

    Article  CAS  Google Scholar 

  16. N. Asakuma, T. Fukui, M. Toki, H. Imai, Low-temperature synthesis of ITO thin films using an ultraviolet laser for conductive coating on organic polymer substrates. J. Sol–Gel Sci. Technol. 27, 91–95 (2003). https://doi.org/10.1023/A:1022640228969

    Article  CAS  Google Scholar 

  17. T. Königer, T. Rechtenwald, I. Al-Naimi, T. Frick, M. Schmidt, H. Münstedt, CO2-laser treatment of indium tin oxide nanoparticle coatings on flexible polyethyleneterephthalate substrates. J. Coat. Technol. Res. 7, 261–269 (2010). https://doi.org/10.1007/s11998-009-9181-5

    Article  CAS  Google Scholar 

  18. H. Kozuka, Wet processing for the fabrication of ceramic thin films on plastics. J. Mater. Res. 28, 673–688 (2013). https://doi.org/10.1557/jmr.2013.13

    Article  CAS  Google Scholar 

  19. H. Kozuka, H. Uchiyama, T. Fukui, M. Takahashi, Method to form ceramic films on plastic substrates, Japanese Patent 5924615 (2016)

  20. H. Kozuka, T. Fukui, M. Takahashi, H. Uchiyama, S. Tsuboi, Ceramic thin films on plastics: a versatile transfer process for large area as well as patterned coating. ACS Appl. Mater. Interfaces 4, 6415–6120 (2012). https://doi.org/10.1021/am3019993

    Article  CAS  Google Scholar 

  21. H. Kozuka, T. Fukui, H. Uchiyama, Sol–gel and transfer technique for fabricating dual ceramic thin film patterns on plastics. J. Sol–Gel Sci. Technol. 67, 414–419 (2013)

    Article  CAS  Google Scholar 

  22. H. Kozuka, Sol–gel preparation of crystalline oxide thin films on plastics, in Handbook of Sol-Gel Science and Technology, 2nd edn, ed. by L.C. Klein, M. Aparicio, A. Jitianu (Springer, Basel, 2018), pp. 3271–3294. https://doi.org/10.1007/s10971-013-3081-y

  23. Y. Qi, N.T. Jafferis, K. Lyons Jr., C.M. Lee, H. Ahmad, M.C. McAlpine, Piezoelectric ribbons printed onto rubber for flexible energy conversion. Nano Lett. 10, 524–528 (2010). https://doi.org/10.1021/nl903377u

    Article  CAS  Google Scholar 

  24. K. Park, D.K. Lee, B.S. Kim, H. Jeon, N.E. Lee, D. Whang, H.J. Lee, Y.J. Kim, J.H. Ahn, Stretchable, transparent zinc oxide thin film transistors. Adv. Funct. Mater. 20, 3577–3582 (2010). https://doi.org/10.1002/adfm.201001107

    Article  CAS  Google Scholar 

  25. K.I. Park, S. Xu, Y. Liu, G.T. Hwang, S.J.L. Kang, Z.L. Wang, K.J. Lee, Piezoelectric BaTiO3 thin film nanogenerator on plastic substrates. Nano Lett. 10, 4939–4943 (2010). https://doi.org/10.1021/nl102959k

    Article  CAS  Google Scholar 

  26. H. Kozuka, M. Takahashi, K. Niinuma, H. Uchiyama, Fabrication of highly crystalline oxide thin films on plastics: Sol–gel transfer technique involving high temperature process. J. Asian Ceram. Soc. 4, 329–336 (2016). https://doi.org/10.1016/j.jascer.2016.06.003

    Article  Google Scholar 

  27. N. Amano, M. Takahashi, H. Uchiyama, H. Kozuka, Transferability and adhesion of sol-gel-derived crystalline TiO2 thin films to different types of plastic substrates. Langmuir 33, 947–953 (2017). https://doi.org/10.1021/acs.langmuir.6b04142

    Article  CAS  Google Scholar 

  28. T. Yamada, R. Okuda, H. Hirakoso, H. Kozuka, Sol–gel preparation of yttria-stabilized zirconia thin films and transfer to polycarbonate substrates. J. Sol–Gel Sci. Technol. 99, 554–561 (2019). https://doi.org/10.1007/s10971-019-05112-1

    Article  CAS  Google Scholar 

  29. Y.M. Hunge, A.A. Yadav, V.L. Mathe, Oxidative degradation of phthalic acid using TiO2 photocatalyst. J. Mater. Sci. Mater. Electron. 29, 6183–6187 (2018). https://doi.org/10.1007/s10854-018-8593-3

    Article  CAS  Google Scholar 

  30. J.G. Yu, X.J. Zhao, Q.N. Zhao, Effect of surface structure on photocatalytic activity of TiO2 thin films prepared by sol–gel method. Thin Solid Films 379, 7–14 (2000). https://doi.org/10.1016/S0040-6090(00)01542-X

    Article  CAS  Google Scholar 

  31. Y.M. Hunge, A.A. Yadav, S.B. Kulkarni, V.L. Mathe, A multifunctional ZnO thin film based devices for photoelectrocatalytic degradation of terephthalic acid and CO2 gas sensing applications. Sensors Actuators B 274, 1–9 (2018). https://doi.org/10.1016/j.snb.2018.07.117

    Article  CAS  Google Scholar 

  32. M. Ohyama, H. Kozuka, T. Yoko, Sol-gel preparation of ZnO films with extremely preferred orientation along (002) plane from zinc acetate solution. Thin Solid Films 306, 78–85 (1997). https://doi.org/10.1016/S0040-6090(97)00231-9

    Article  CAS  Google Scholar 

  33. Y. Ohya, H. Saiki, T. Tanaka, Y. Takahashi, Microstructure of TiO2 and ZnO films fabricated by the sol–gel method. J. Am. Ceram. Soc. 79, 825–883 (1996). https://doi.org/10.1111/j.1151-2916.1996.tb08512.x|

    Article  CAS  Google Scholar 

  34. M. Tahara, N.K. Cuong, Y. Nakashima, Improvement in adhesion of polyethylene by glow-discharge plasma. Surf. Coat. Technol. 173–174, 826–830 (2003). https://doi.org/10.1016/S0257-8972(03)00415-8

    Article  CAS  Google Scholar 

  35. D. Sanchez-Rodriguez, J. Farjas, P. Roura, S. Ricart, N. Mestres, X. Obradors, T. Puig, Thermal analysis for low temperature synthesis of oxide thin films from chemical solutions. J. Phys. Chem. C 117, 20133–20138 (2013). https://doi.org/10.1021/jp4049742

    Article  CAS  Google Scholar 

  36. B. Villarejo, C. Pop, S. Ricart, B. Mundet, A. Palau, P. Roura-Grabulosa, J. Farjas, T. Puig, X. Obradors, Pyrolysis study of solution-derived superconducting YBa2Cu3O7 films: disentangling the physico-chemical transformations. J. Mater. Chem. C 8, 10266–10282 (2020). https://doi.org/10.1039/d0tc01846e

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was financially supported by the Kazuchika Okura Memorial Foundation (45th Research Grant), and the Murata Science Foundation (31st Research Grant).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiromitsu Kozuka.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 81 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Niinuma, K., Kozuka, H. Highly crystalline metal oxide thin films on plastic substrates prepared via firing and transfer: key role of the “lost” organic underlayer. J Mater Sci: Mater Electron 31, 18964–18979 (2020). https://doi.org/10.1007/s10854-020-04433-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-04433-0

Navigation