Skip to main content
Log in

The preparation of black phosphorus in RP/Sn/I2 system: its nucleation agent and relatively optimal temperature program

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

A convenient chemical vapor transport (CVT) approach to fabricate orthorhombic black phosphorus (BP) single crystal under vacuum is presented. In this system of red phosphorus (RP), tin (Sn), and iodine (I2), the preparation process is recorded in detail and then a relatively optimal temperature program is proposed. The preparation time can be significantly reduced, which takes only 1035 min. And we investigate that the possibility of Sn24P19.3I8 works as the nucleation agent of BP from the theoretical and experimental perspectives. And the theoretical prediction and calculation verify that Sn24P19.3I8 is similar with BP in terms of structure and the existence of Sn24P19.3I8 accorded with the laws of thermodynamics. Additionally, we observe that BP actually grows on Sn24P19.3I8 by high-resolution transmission electron microscopy (HRTEM) for the first time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References:

  1. L. Lin, J. Zhang, H. Su, J. Li, L. Sun, Z. Wang et al., Towards super-clean graphene. Nat. Commun. 10(1), 1912 (2019)

    Article  CAS  Google Scholar 

  2. A. Laturia, M.L. Van de Put, W.G. Vandenberghe, Dielectric properties of hexagonal boron nitride and transition metal dichalcogenides: from monolayer to bulk. npj 2D Mater. Appl. 2(1), 6 (2018)

    Article  CAS  Google Scholar 

  3. M. Zhang, K. Cheng, H. Yan, Q. Wei, B. Zheng, Electronic bonding analyses and mechanical strengths of incompressible tetragonal transition metal dinitrides TMN2 (TM = Ti, Zr, and Hf). Sci. Rep. 6, 36911 (2016)

    Article  CAS  Google Scholar 

  4. B. Anasori, M.R. Lukatskaya, Y. Gogotsi, 2D metal carbides and nitrides (MXenes) for energy storage. Nat. Rev. Mater. 2(2), 1–17 (2017)

    Article  CAS  Google Scholar 

  5. H. Graphene, H. Radamson, Springer handbook of electronic and photonic materials (Springer, Cham, 2017)

    Google Scholar 

  6. Y.Y. Fang, X.Z. Li, J. Li, C.H. Yao, H.Y. Hoh, X. Hai et al., Janus electrochemical exfoliation of two−dimensional materials. J. Mater. Chem. A 7(45), 25691–25711 (2019)

    Article  CAS  Google Scholar 

  7. F. Song, X. Hu, Exfoliation of layered double hydroxides for enhanced oxygen evolution catalysis. Nat. Commun. 5, 1–9 (2014)

    Google Scholar 

  8. M.A. Susner, M. Chyasnavichyus, M.A. McGuire, P. Ganesh, P. Maksymovych, Metal Thio- and selenophosphates as multifunctional van der waals layered materials. Adv Mater. 29(38), 1602852 (2017)

    Article  CAS  Google Scholar 

  9. T. Rodenas, I. Luz, G. Prieto, B. Seoane, H. Miro, A. Corma et al., Metal−organic framework nanosheets in polymer composite materials for gas separation. Nat. Mater. 14(1), 48–55 (2015)

    Article  CAS  Google Scholar 

  10. E.L. Spitler, B.T. Koo, J.L. Novotney, J.W. Colson, F.J. Uribe-Romo, G.D. Gutierrez et al., A 2D covalent organic framework with 47-nm pores and insight into its interlayer stacking. J. Am. Chem. Soc. 133(48), 19416–19421 (2011)

    Article  CAS  Google Scholar 

  11. J.C. Blancon, H. Tsai, W. Nie, C.C. Stoumpos, L. Pedesseau, C. Katan et al., Perovskite physics extremely efficient internal exciton dissociation through edge states in layered 2D perovskites. Science 355(6331), 1288–1291 (2017)

    Article  CAS  Google Scholar 

  12. M. Luo, T. Fan, Y. Zhou, H. Zhang, L. Mei, 2D black phosphorus-based biomedical applications. Adv. Func. Mater. 29(13), 1808306 (2019)

    Article  CAS  Google Scholar 

  13. M. Qiu, Z.T. Sun, D.K. Sang, X.G. Han, H. Zhang, C.M. Niu, Current progress in black phosphorus materials and their applications in electrochemical energy storage. Nanoscale 9(36), 13384–13403 (2017)

    Article  CAS  Google Scholar 

  14. L. Li, Y. Yu, G.J. Ye, Q. Ge, X. Ou, H. Wu et al., Black phosphorus field−effect transistors. Nat. Nanotechnol. 9(5), 372–377 (2014)

    Article  CAS  Google Scholar 

  15. K.J. Chang, M.L. Cohen, Rhombohedral phase stability of the group−VA elements. Phys. Rev. B. 33(10), 7371–7374 (1986)

    Article  CAS  Google Scholar 

  16. Y. Li, S. Jiang, Y. Qian, Y. Han, J. Zhou, T. Li et al., Amine-induced phase transition from white phosphorus to red/black phosphorus for Li/K-ion storage. Chem. Commun. 55(47), 6751–6754 (2019)

    Article  CAS  Google Scholar 

  17. W.-J. Li, S.-L. Chou, J.-Z. Wang, H.-K. Liu, S.-X. Dou, Simply mixed commercial red phosphorus and carbon nanotube composite with exceptionally reversible sodium-ion storage. Nano Lett. 13(11), 5480–5484 (2013)

    Article  CAS  Google Scholar 

  18. H. Thurn, H. Kerbs, Crystal structure of violet phosphorus. Angew. Chem., Int. Ed. Engl. 5(12), 1047–1048 (1966)

    Article  CAS  Google Scholar 

  19. Z. Zhu, D. Tomanek, Semiconducting layered blue phosphorus: a computational study. Phys. Rev. Lett. 112(17), 176802 (2014)

    Article  CAS  Google Scholar 

  20. P.W. Bridgman, Two new modifications of phosphorus. J. Am. Chem. Soc. 36(7), 1344–1363 (1914)

    Article  CAS  Google Scholar 

  21. P.W. Bridgman, Collected experimental papers of P W. Bridgman. Am. J. Phys. 33(6), 516–517 (1965)

    Article  Google Scholar 

  22. A. Brown, S. Rundqvist, Refinement of the crystal structure of black phosphorus. Acta Crystallogr. A 19(4), 684–685 (1965)

    Article  CAS  Google Scholar 

  23. H. Krebs, H. Weitz, K.H. Worms, Über die Struktur und Eigenschaften der Halbmetalle: VIII: Die katalytische Darstellung des schwarzen Phosphors. Zeitschrift für anorganische und allgemeine Chemie 280(1–3), 119–133 (1995)

    Google Scholar 

  24. S. Lange, P. Schmidt, T. Nilges, Au3SnP7@Black phosphorus: an easy access to black phosphorus. ChemInform. 38(30), 4028–4035 (2007)

    Article  Google Scholar 

  25. C.-M. Park, H.-J. Sohn, Black phosphorus and its composite for lithium rechargeable batteries. Adv. Mater. 19(18), 2465 (2007)

    Article  CAS  Google Scholar 

  26. Z. Cai, B. Liu, X. Zou, H.-M. Cheng, Chemical vapor deposition growth and applications of two: dimensional materials and their heterostructures. Chem. Rev. 118(13), 6091–6133 (2018)

    Article  CAS  Google Scholar 

  27. Z. Chen, Y. Zhu, J. Lei, W. Liu, Y. Xu, P. Feng, A stage-by-stage phase-induction and nucleation of black phosphorus from red phosphorus under low−pressure mineralization. CrystEngComm 19(47), 7207–7212 (2017)

    Article  CAS  Google Scholar 

  28. T.R. Thomson, Physical chemistry (Daniels, Farrington; Alberty, Robert A). J. Chem. Educ. 38(12), 639 (1961)

    Article  Google Scholar 

  29. JANAF thermochemical tables. Third Edition. Anal Chem. 1992;64(8):502A

  30. Barin I. Thermochemical data of pure substances. Third Edition 2008.

  31. R. Glaum, R. Gruehn, Zum chemischen Transport von Chrom− und Manganmonophosphid mit Iod. Experimente und Modellrechnungen. Zeitschrift für anorganische und allgemeine Chemie 573(1), 24–42 (1989)

    Article  CAS  Google Scholar 

  32. A. Ritscher, C. Schmetterer, H. Ipser, Pressure dependence of the tin−phosphorus phase diagram. Monatshefte Fur Chemie 143(12), 1593–1602 (2012)

    Article  CAS  Google Scholar 

  33. J. Kang, J.D. Wood, S.A. Wells, J.-H. Lee, X. Liu, K.-S. Chen et al., Solvent exfoliation of electronic-grade, two-dimensional black phosphorus. ACS Nano 9(4), 3596–3604 (2015)

    Article  CAS  Google Scholar 

  34. Y. Akahama, M. Kobayashi, H. Kawamura, Raman study of black phosphorus up to 13 GPa. Solid State Commun. 104(6), 311–315 (1997)

    Article  CAS  Google Scholar 

  35. F.N. Xia, H. Wang, Y.C. Jia, Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics. Nat. Commun. 5, 1–6 (2014)

    Google Scholar 

Download references

Acknowledgements

This work is supported by the Fundamental Research Funds for the Central Universities (Grant Numbers, 2019XKQYMS21). And the authors would like to thank Chuanlin Sun from Shiyanjia Lab (www.shiyanjia.com) for the TG and XPS measurement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yabo Zhu.

Ethics declarations

Conflicts of interest

There are no conflicts to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1788 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Q., Zhu, Y., Shi, C. et al. The preparation of black phosphorus in RP/Sn/I2 system: its nucleation agent and relatively optimal temperature program. J Mater Sci: Mater Electron 31, 19093–19105 (2020). https://doi.org/10.1007/s10854-020-04446-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-04446-9

Navigation