Skip to main content
Log in

Rhombohedral-orthorhombic-tetragonal multiphases coexist in (Ba0.85Ca0.15)(Ti0.9Zr0.08Sn0.02)O3-SrTiO3 piezoelectric ceramics prepared by microwave sintering techniques

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

To upgrade integrated piezoelectric properties of lead-free ceramics, (Ba0.85Ca0.15)(Ti0.9Zr0.08Sn0.02)O3-SrTiO3 ceramics were successfully fabricated by the tape casting method and microwave sintering (MWS) techniques. The experimental results show that rhombohedral-orthorhombic-tetragonal(R-O-T) multiphases coexist in the samples, and excellent piezoelectric performance of the ceramics (d33 = 398 pC/N, Pr = 3.90 µC/cm2, Ec = 3.43 kV/cm, tanδ = 4.8%, εr = 7791, and Tc = 82 °C, respectively) is obtained under 1300 °C for 1 h. The template of ST, prepared through molten-salt two-step method, can guide the grains to grow in the < 001 > direction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. H.G.H., Ferroelectric ceramics history and technology. J. Am. Ceram. Soc. 82(1999) 797–818

  2. C.A. Randall et al., High strain piezoelectric multilayer actuators-A material science and engineering challenge. J. Electroceram. 14, 177–191 (2005)

    Article  Google Scholar 

  3. S.H. Kim et al., Application of Ag-ceramic composite electrodes to low firing piezoelectric multilayer ceramic actuators. J. Electroceram. 20, 225–229 (2008)

    Article  Google Scholar 

  4. J. Rödel et al., Transferring lead-free piezoelectric ceramics into application. J. Eur. Ceram. Soc. 35, 1659–1681 (2015)

    Article  Google Scholar 

  5. S.T. Zhang et al., Giant strain in lead-free piezoceramics Bi0.5Na0.5TiO3-BaTiO3-K0.5Na0.5NbO3 system. Appl. Phys. Lett. 91, 112906 (2007)

    Article  Google Scholar 

  6. Y. Saito et al., Lead-free piezoceramics. Natrue. 432, 84–87 (2004)

    Article  CAS  Google Scholar 

  7. T. Ibn-Mohammed et al., Are lead-free piezoelectrics more environmentally friendly? MRS Communications. 7, 1–7 (2017)

    Article  CAS  Google Scholar 

  8. T. Ibn-Mohammed et al., Integrated hybrid life cycle assessment and supply chain environmental profile evaluations of lead based (lead zirconate titanate) versus lead-free (potassium sodium niobate) piezoelectric ceramics. Ener. Envir. Sci. 9, 3495–3520 (2016)

    Article  CAS  Google Scholar 

  9. J. Wu et al., Multiferroic bismuth ferrite-based materials for multifunctional applications: ceramic bulks, thin Films and nanostructures. Prog. Mater Sci. 84, 335–402 (2016)

    Article  CAS  Google Scholar 

  10. X. Lv et al., (1-x)(K0.48Na0.52)(Nb0.95–y–zTazSby)O3-xBi0.5(Na0.82K0.18)0.5ZrO3 lead-free ceramics: composition dependence of the phase boundaries and electrical properties. Dalton Transactions. 44, 4440–4448 (2015)

    Article  CAS  Google Scholar 

  11. Y. Guo et al., Large electric field-induced strain and antiferroelectric behavior in (1-x)(Na0.5Bi0.5)TiO3-xBaTiO3 Ceramics. Chem. Mater. 23, 219–228 (2011)

    Article  CAS  Google Scholar 

  12. Dawei, Wang et al., Crystal Structure, Phase Transitions and Photoferroelectric Properties of KNbO3-Based Lead-Free Ferroelectric Ceramics: A Brief Review. Fron. Mater. 7, 91 (2020)

    Article  Google Scholar 

  13. F. Hussain et al., Effect of Ta-doping on functional properties of K0.51Na0.49NbO3. Mater. Research Express. 6, 106309 (2019)

    Article  CAS  Google Scholar 

  14. K. Liu et al., Large electrostrain in low-temperature sintered NBT-BT-0.025FN incipient piezoceramics. J. Am. Ceram. Soc. 103, 3739–3747 (2020)

    Article  CAS  Google Scholar 

  15. Z.A.B. Yong et al., Enhanced mechanical energy harvesting capability in sodium bismuth titanate based lead-free piezoelectric. J. Alloy. Compd. 825, 154020 (2020)

    Article  Google Scholar 

  16. Xin Lai, et al., Structure and dielectric properties of MgO-coated BaTiO3 ceramics. J. Mater. Sci.: Mater. Electron. 31(2020) 8963–8970..

    Google Scholar 

  17. D. Han et al., A temperature stable (Ba1 – xCex)(Ti1 – x/2Mgx/2)O3 lead-free ceramic for X4D capacitors. J. Alloy. Compd. 821, 153480 (2019)

    Article  Google Scholar 

  18. Ge, Wang et al., Origin of the large electrostrain in BiFeO3-BaTiO3 based lead-free ceramics. J. Mater. Chem. A. 7, 21254–21263 (2019)

    Article  Google Scholar 

  19. Shunsuke et al., High strain (0.4%) Bi(Mg2/3Nb1/3)O3-BaTiO3‐BiFeO3 lead‐free piezoelectric ceramics and multilayers. J. Am. Ceram. Soc. 101, 5428–5442 (2018)

    Article  Google Scholar 

  20. N. Ma et al., Phase structure and nano-domain in high performance of BaTiO3 piezoelectric ceramics. J. Eur. Ceram. Soc. 32, 1059–1066 (2012)

    Article  CAS  Google Scholar 

  21. W. Li et al., Improved piezoelectric property and bright upconversion luminescence in Er doped (Ba0.99Ca0.01)(Ti0.98Zr0.02)O3 ceramics. J. Alloy. Compd. 583, 305–308 (2014)

    Article  CAS  Google Scholar 

  22. D. Xue et al., Large piezoelectric effect in Pb-free Ba(Ti,Sn)O3-x(Ba,Ca)TiO3 ceramics. Appl. Phys. Lett. 99, 122901 (2011)

    Article  Google Scholar 

  23. X. Huang et al., Influence of CeO2 doping amount on property of BCTZ lead-free piezoelectric ceramics sintered at low temperature. J. Rare Earths 32, 733–737 (2014)

    Article  CAS  Google Scholar 

  24. L. Wei et al., Effect of Ho doping on piezoelectric properties of BCZT ceramics. Ceram. Int. 38, 4353–4355 (2012)

    Article  Google Scholar 

  25. H. Sun et al., Lead-free Ba0.98Ca0.02Zr0.02Ti0.98O3 ceramics with enhanced electrical performance by modifying MnO2 doping content and sintering temperature. J. Alloy. Compd. 670, 262–267 (2016)

    Article  CAS  Google Scholar 

  26. Z. Wang et al., Giant permittivity and low dielectric loss of SrTiO3 ceramics sintered in nitrogen atmosphere. J. Eur. Ceram. Soc. 34, 1755–1760 (2014)

    Article  CAS  Google Scholar 

  27. Z. Wang et al., Effects of Sr/Ti ratio on the microstructure and energy storage properties of nonstoichiometric SrTiO3 ceramics. Ceram. Int. 40, 929–933 (2014)

    Article  CAS  Google Scholar 

  28. K.H. Cho et al., Microstructure and Piezoelectric Properties of 0.95(Na0.5K0.5) NbO3-0.05SrTiO3 Ceramics. J. Am. Ceram. Soc. 90(2007) 1946-1949

  29. S. Mahajan et al., A comparative study of Ba0.95Ca0.05Zr0.25Ti0.75O3 relaxor ceramics prepared by conventional and microwave sintering techniques. Mater. Chem. Phys. 112, 858–862 (2008)

    Article  CAS  Google Scholar 

  30. E. Cai et al., A comparative study of lead-free (Ba0.85Ca0.15)(Ti0.9Zr0.08Sn0.02)O3 ceramics prepared by conventional sintering and microwave sintering techniques. Ceram. Int. 44, 788–798 (2018)

    Article  CAS  Google Scholar 

  31. L. Yao et al., Effect of SnO2 doping on dielectric relaxation and electrical properties of lead-free (Ba0.85Ca0.15)(Ti0.9Zr0.1–xSnx)O3 ceramics. J. Synt. Crys. 45, 929–934 (2016)

    CAS  Google Scholar 

  32. K. Watari et al., Epitaxial growth of anisotropically shaped, single-crystal particles of cubic SrTiO3. J. Mater. Research. 15, 846–849 (2000)

    Article  CAS  Google Scholar 

  33. G.L. Messing et al., Anisotropically shaped SrTiO3 single crystal particles. 2003

  34. Y. Huseyin et al., Reactive templated grain growth of textured sodium bismuth titanate (Na1/2Bi1/2TiO3-BaTiO3) ceramics processing. J. Electroceram. 11, 207–215 (2003)

    Article  Google Scholar 

  35. Ge, Wang et al., Lead-free (Ba,Sr)TiO3-BiFeO3 based multilayer ceramic capacitors with high energy density. J. Eur. Ceram. Soc. 40, 1779–1783 (2020)

    Article  Google Scholar 

  36. Ge, Wang et al., Ultrahigh energy storage density lead-free multilayers by controlled electrical homogeneity. Ener. Envir. Sci. 12, 582–588 (2019)

    Article  Google Scholar 

  37. W. Liu, X. Ren, Large Piezoelectric Effect in Pb-Free Ceramics. Phys. Lett. 103, 257602 (2009)

    Article  Google Scholar 

  38. H. Du et al., Phase structure, dielectric properties, and relaxor behavior of (K0.5Na0.5)NbO3-(Ba0.5Sr0.5)TiO3 lead-free solid solution for high temperature applications. J. Appl. Phys. 105, 634–639 (2009)

    Google Scholar 

  39. F. Zeng et al., Dielectric loss models, relaxor behavior and high ferroelectric properties of BCZTS-xST ceramics. J. Mater. Sci.: Mater. Electron. 29, 18978–18988 (2018)

    CAS  Google Scholar 

Download references

Acknowledgements

This work is financially supported by the National Natural Science Foundation of China (NSFC Nos. 51602066, 51862003) and High-level innovative talents plan of Guizhou province (No. (2015) 4009).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qibin Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xue, A., Liu, Q., Yang, H. et al. Rhombohedral-orthorhombic-tetragonal multiphases coexist in (Ba0.85Ca0.15)(Ti0.9Zr0.08Sn0.02)O3-SrTiO3 piezoelectric ceramics prepared by microwave sintering techniques. J Mater Sci: Mater Electron 31, 19388–19395 (2020). https://doi.org/10.1007/s10854-020-04473-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-04473-6

Navigation