Skip to main content
Log in

Dielectric response and microwave absorption properties of SiCw/SiCf composites derived from carbon fiber

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The SiCw/SiCf composites composed by SiC whiskers with core–shell structure and SiC fiber with alike-array structure were prepared without growth catalyst, hydrogen silicone oil (H-PSO) as raw material, carbon fiber as the matrix. SiC fibers act as supports for a nanomesh containing interconnected one-dimensional SiC whiskers. The results of studying the absorption properties of the Ku band show that the density of stacking faults decreases and the aspect ratio increases as the heat treatment temperature increases and they jointly affect the dielectric properties of the SiCw/SiCf composites. The minimum reflection loss of the SiCw/SiCf composites obtained at 1400 °C can reach − 29.75 dB when the absorber thickness is 3.0 mm, and the effective bandwidth is 2.25 GHz. The polarization relaxation and interfacial polarization in the unique structure improve the microwave absorption properties and broaden the absorption frequency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. X.Y. Yuan, L.F. Cheng, L. Kong et al., Preparation of titanium carbide whiskers for application in electromagnetic wave absorption. J. Alloys Compd. 596, 132–139 (2014)

    Article  CAS  Google Scholar 

  2. A. Siriwitpreecha, P. Rattanadecho, T. Wessapan, The influence of wave propagation mode on specific absorption rate and heat transfer in human body exposed to electromagnetic wave. Int. J. Heat Mass Transf. 65, 423–434 (2013)

    Article  Google Scholar 

  3. P. Bandara, O.C. David, Planetary electromagnetic pollution: it is time to assess its impact. Lancet Planet. Health 2, e512–e514 (2018)

    Article  Google Scholar 

  4. E. Handoko, I. Sugihartono, S. Budi et al., The effect of thickness on microwave absorption properties of barium ferrite powder. J. Phys. Conf. Ser. 1080, 1–7 (2018)

    Google Scholar 

  5. A.N. Hapishah, M. Msyazwan, M.H. Hamidon, Synthesis and characterization of magnetic and microwave absorption properties in polycrystalline cobalt zinc ferrite (Co0.5Zn0.5Fe2O4) composite. J. Mater. Sci-Mater. El. 29, 20573–20579 (2018)

    Article  CAS  Google Scholar 

  6. Y.Y. Zhou, H. Xie, W.C. Zhou et al., Enhanced antioxidation and microwave absorption properties of SiO2-coated flaky carbonyl iron particles. J. Magn. Magn. Mater. 446, 143–149 (2018)

    Article  CAS  Google Scholar 

  7. X.G. Su, J. Wang, X.X. Zhang et al., Design of hierarchical 1D–2D NiCo2O4 as high-performance microwave absorber with strong loss and wide absorption frequency. J. Mater. Sci-Mater. El. 30, 16287–16297 (2019)

    Article  CAS  Google Scholar 

  8. X.L. Chen, X.W. Wang, L.D. Li et al., Preparation and microwave absorption properties of nickel-coated carbon fiber with polyaniline via in situ polymerization. J. Mater. Sci-Mater. El. 27, 5607–5612 (2016)

    Article  CAS  Google Scholar 

  9. W.L. Pan, M. He, X.H. Bu et al., Microwave absorption and infrared emissivity of helical polyacetylene@multiwalled carbon nanotubes composites. J. Mater. Sci-Mater. El. 28, 8601–8610 (2017)

    Article  CAS  Google Scholar 

  10. S.V. Truknanov, A.V. Truknanov, V.G. Kostishin et al., Magnetic and absorption properties of M-type substituted hexaferrites BaFe12–xGaxO19 (0.1 < x < 12). J. Exp. Theor. Phys. 123, 461–469 (2016)

    Article  Google Scholar 

  11. L.Y. Matzui, A.V. Trukhanov, O.S. Yakovenko et al., Functional magnetic composites based on hexaferrites: correlation of the composition, magnetic and high-frequency properties. Nanomaterials 9, 1720 (2019)

    Article  CAS  Google Scholar 

  12. O.S. Yakovenko, L.Y. Matzui, L.L. Vovchenko et al., Electrophysical properties of epoxy-based composites with graphite nanoplatelets and magnetically aligned magnetite. Mol. Cryst. Liq. Cryst. 661, 68–80 (2018)

    Article  CAS  Google Scholar 

  13. D.A. Vinnik, D.S. Klygach, V.E. Zhivulin et al., Electromagnetic properties of BaFe12O19:Ti at centimeter wavelengths. J. Alloys Compd. 755, 177–183 (2018)

    Article  CAS  Google Scholar 

  14. Y.C. Wang, P. Xiao, W. Zhou et al., Microstructures, dielectric response and microwave absorption properties of polycarbosilane derived SiC powders. Ceram. Int. 4, 3606–3613 (2018)

    Article  Google Scholar 

  15. X.L. Ye, Z.F. Chen, M. Li et al., Microstructure and microwave absorption properties variation of SiC/C foam at different elevated-temperature heat treatment. ACS Sustain. Chem. Eng. 7, 18395–18404 (2019)

    Article  CAS  Google Scholar 

  16. S. Dong, X.H. Zhang, D.Y. Zhang et al., Strong effect of atmosphere on the microstructure and microwave absorption properties of porous SiC ceramics. J. Eur. Ceram. Soc. 1, 29–39 (2018)

    Article  Google Scholar 

  17. T. Han, R.Y. Luo, G.Y. Cui et al., Effect of SiC whiskers on the high-temperature microwave absorption properties of SiCf/SiC composites. J. Eur. Ceram. Soc. 5, 1743–1756 (2019)

    Article  Google Scholar 

  18. S.C. Duan, D.M. Zhu, J. Dong et al., Enhanced mechanical and microwave absorptionproperties of SiCf/SiC composite using aluminum powder as active filler. J. Alloys Compd. 790, 58–69 (2019)

    Article  CAS  Google Scholar 

  19. B. Du, C. He, A. Shui et al., Microwave-absorption properties of heterostructural SiC whiskers/SiOC ceramic derived from polysiloxane. Ceram. Int. 45, 1208–1214 (2019)

    Article  CAS  Google Scholar 

  20. L.W. Yan, C.Q. Hong, B.Q. Sun et al., In situ growth of core−sheath heterostructural SiC whisker arrays on carbon fibers and enhanced electromagnetic wave absorption properties. ACS. Appl. Mater. Interfaces 7, 6320–6331 (2017)

    Article  Google Scholar 

  21. A.V. Trukhanov, K.A. Astapovich, M.A. Almessiere et al., Pecularities of the magnetic structure and microwave properties in Ba(Fe1xScx)12O19 (x < 0.1) hexaferrites. J. Alloys Compd. 822, 153575 (2020)

    Article  CAS  Google Scholar 

  22. M.A. Almessiere, Y. Slimani, H. Güngüneş et al., Impact of Eu3+ ion substitution on structural, magnetic and microwave traits of Ni–Cu–Zn spinel ferrites. Ceram. Int. 46, 11124–11131 (2020)

    Article  CAS  Google Scholar 

  23. Y. Luo, S.L. Zheng, S.H. Ma et al., Novel two-step process for synthesising β-SiC whiskers from coal fly ash and water glass. Ceram. Int. 44, 10585–10595 (2018)

    Article  CAS  Google Scholar 

  24. H.Y. Zhang, Y.J. Xu, J.G. Zhou et al., Stacking fault and unoccupied densities of state dependence of electromagnetic wave absorption in SiC whiskers. J. Mater. Chem. C 3, 4416–4423 (2015)

    Article  CAS  Google Scholar 

  25. C. Kunzmann, J. Moosburger-Will, S. Horn, High-resolution imaging of the nanostructured surface of polyacrylonitrile-based fibers. J. Mater. Sci. 51, 9638–9648 (2016)

    Article  CAS  Google Scholar 

  26. H.L. Xu, X.W. Yin, M.H. Li et al., Ultralight cellular foam from cellulose nanofiber/carbon nanotube self-assemblies for ultrabroad-band microwave absorption. ACS Appl. Mater. Interfaces 25, 22628–22636 (2019)

    Article  Google Scholar 

  27. Y.S. Mi, Y. Chen, Z.S. Zheng et al., New discoveries in the growth of SiC whiskers derived from hydrogen silicone oil. J. Cryst. Growth 543, 125711 (2020)

    Article  CAS  Google Scholar 

  28. Y. Chen, C.G. Wang, B. Zhu et al., Growth of SiC whiskers from hydrogen silicone oil. J. Cryst. Growth 357, 42–47 (2012)

    Article  CAS  Google Scholar 

  29. S. Dong, W.Z. Zhang, P. Hu et al., Nitrogen content dependent microwave absorption property of nitrogen-doped SiC materials annealed in N2: opposing trends for microparticles and whiskers. J. Alloys Compd. 758, 256–267 (2018)

    Article  CAS  Google Scholar 

  30. B.B. Li, B.X. Mao, T. He et al., Preparation and microwave absorption properties of double-layer hollow reticulated SiC foam. ACS Appl. Electron. Mater. 10, 2140–2149 (2019)

    Google Scholar 

  31. J.L. Kuang, W.B. Cao, Silicon carbide whiskers: preparation and high dielectric permittivity. J. Am. Ceram. Soc. 96, 2877–2880 (2013)

    Article  CAS  Google Scholar 

  32. J.L. Kuang, W.B. Cao, Stacking faults induced high dielectric permittivity of SiC wires. Appl. Phys. Lett. 11, 112906 (2013)

    Article  Google Scholar 

  33. J.L. Kuang, P. Jiang, X.J. Hou et al., Dielectric permittivity and microwave absorption properties of SiC whiskers with different lengths. Solid State Sci. 91, 73–76 (2019)

    Article  CAS  Google Scholar 

  34. J.L. Kuang, T. Xiao, Q.F. Zheng et al., Dielectric permittivity and microwave absorption properties of transition metal Ni and Mn doped SiC nanowires. Ceram. Int. 46, 12996–13002 (2020)

    Article  CAS  Google Scholar 

  35. C. Grosse, A program for the fitting of Debye, Cole-Cole, Cole-Davidson, and Havriliak–Negami dispersions to dielectric data. J. Colloid Interface Sci. 419, 102–106 (2014)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation Youth Fund of Hebei Province (E2016209327).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yang Chen or Zhanshen Zheng.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Electronic supplementary material 1 (DOCX 257 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mi, Y., Chen, Y., Zheng, Z. et al. Dielectric response and microwave absorption properties of SiCw/SiCf composites derived from carbon fiber. J Mater Sci: Mater Electron 32, 442–452 (2021). https://doi.org/10.1007/s10854-020-04792-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-04792-8

Navigation