Skip to main content
Log in

Structural and dielectric correlation in nano ZnMn2−xCrxO4

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Nano ZnMn2−xCrxO4 samples (x = 0, 0.05, 0.15, 0.2) were synthesized by the sol–gel procedure. The synchrotron X-ray diffraction technique was used to investigate the developed phases, cation distributions of different ions between different sites, lattice parameters, and crystallite size upon increasing the amount of Cr doping in nano ZnMn2O4. X-ray photoelectron spectroscopy (XPS) was utilized to explore the cation oxidation state and the elemental composition of the samples. The valence state of the incorporated chromium is determined to be Cr3+ only. The effect of Cr doping, frequency, and temperature on the dielectric constant, dielectric loss, ac conductivity, complex impedance, and modulus was studied in detail. At a low temperature range, the samples exhibited a semiconductor feature, while at a higher temperature range, the samples revealed metallic behavior. Also, the conduction-type mechanism for each doped sample was determined. The activation energy was affected by the amount of Cr doping. A sample with 15% Cr doping has the highest conductivity among the other samples. Also, the effect of doping and temperature on the Nyquist diagram was examined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. R. Gherbi, Y. Bessekhouad, M. Trari, J. Phys. Chem. Solids 89, 69 (2016)

    Article  CAS  Google Scholar 

  2. Y. Bessekhouad, M. Trari, Int. J. Hydrog. Energy 27, 357 (2002)

    Article  CAS  Google Scholar 

  3. S. Åsbrink, A. Wáskowska, L. Gerward, J.S. Olsen, E. Talik, Phys. Rev. B 60, 12651 (1999)

    Article  Google Scholar 

  4. A. Meenakshisundaram, N. Gunasekaran, V. Srinivaran, Phys. Status Solidi 69, k15 (1982)

    Article  CAS  Google Scholar 

  5. A.S. Basaleh, R.M. Mohamed, Appl. Nanosci. 10, 3865 (2020)

    Article  CAS  Google Scholar 

  6. Z.K. Heiba, M.M. Ghannam, M.M.S. Sanad, A.A. Albassam, M.B. Mohamed, J. Mater. Sci. Mater. Electron. 31(11), 8946 (2020)

    Article  CAS  Google Scholar 

  7. D. Gourier, A. Bessière, S.K. Sharma, L. Binet, B. Viana, N. Basavaraju, K.R. Priolkar, J. Phys. Chem. Solids 75, 826 (2014)

    Article  CAS  Google Scholar 

  8. I. Bibi, U. Ali, S. Kamal, S. Ata, S.M. Ibrahim, F. Majid, Z. Nazeer, F. Rehman, S. Iqbal, M. Iqbal, J. Mater. Sci. Technol. 9(6), 12031 (2020)

    CAS  Google Scholar 

  9. S. Nasir, M. Anis-ur-Rehman, M.A. Malik, Phys. Scr. 83, 025602 (2011)

    Article  Google Scholar 

  10. S. Saha, B. Das, N. Mazumder, J. Sol–Gel Sci. Technol. 61, 518 (2012)

    Article  CAS  Google Scholar 

  11. R. Jayaprakash, M. Seehra, T. Prakash, S. Kumar, J. Phys. Chem. Solids 74, 943 (2013)

    Article  Google Scholar 

  12. M. Kamran, W. Shoukat, K. Nadeem, S. Salman Hussain, F. Zeb, S. Hussain, Mater. Res. Express 6, 076106 (2019)

    Article  CAS  Google Scholar 

  13. K. Khan, Z. Iqba, H. Abbas, A. Hassan, K. Nadeem, J. Mater. Sci. Mater. Electron. 31, 8578 (2020)

    Article  CAS  Google Scholar 

  14. M.M. Ghannam, Z.K. Heiba, M.M.S. Sanad, M.B. Mohamed, Appl. Phys. A 126(5), 1 (2020)

    Article  Google Scholar 

  15. L. Lutterotti, Nucl. Instrum. Methods Phys. Res. B 268, 334 (2010)

    Article  CAS  Google Scholar 

  16. J. Rodríguez-Carvajal, Physica B (Amst. Neth.) 192, 55 (1993)

    Article  Google Scholar 

  17. X. Juan, H. Hua, L. Hanxing, Y. Zhonghua, S. Zhe, Z. Lin, X. Qi, D. Jinqiang, C. Minghe, Ceram. Int. 42, 12796 (2016)

    Article  Google Scholar 

  18. P.C. Sati, M. Kumar, S. Chhoker, Ceram. Int. 41, 3227 (2015)

    Article  Google Scholar 

  19. A.K. Jonscher, Universal Relaxation Law (Chelsea Dielectrics Press, London, 1996)

    Google Scholar 

  20. Z.K. Heiba, N.G. Imam, M.B. Mohamed, J. Mol. Struct. 1095, 61 (2015)

    Article  CAS  Google Scholar 

  21. R. Gherbi, Y. Bessekhouad, M. Trari, J. Alloys Compd. 655, 188–197 (2016)

    Article  CAS  Google Scholar 

  22. M.C. Biesinger et al., Appl. Surf. Sci. 257, 2717–2730 (2011)

    Article  CAS  Google Scholar 

  23. Y. Lin, W. Cai, X. Tian, Mater. Chem. 21, 991 (2011)

    Article  CAS  Google Scholar 

  24. X. Zeng, L. Shi, L. Li, J. Yang, X. Cheng, M. Gao, RSC Adv. 5, 70379 (2015)

    Article  CAS  Google Scholar 

  25. K.W. Wagner, Ann. Phys. 40, 817 (1973)

    Google Scholar 

  26. C.G. Koops, Phys. Rev. 83, 121 (1951)

    Article  CAS  Google Scholar 

  27. M. Rostami, M.H. Majles Ara, Ceram. Int. 45(6), 7606 (2019)

    Article  CAS  Google Scholar 

  28. M. Lakshmi, K. Vijaya Kumar, K. Thyagarajan, Adv. Mater. Phys. Chem. 6, 141 (2016)

    Article  CAS  Google Scholar 

  29. M. Ashtara, A. Munirb, M. Anis-ur-Rehmanb, A. Maqsood, Mater. Res. Bull. 79, 14 (2016)

    Article  Google Scholar 

  30. M. Junaid, M.A. Khan, F. Iqbal, G. Murtaza, M.N. Akhtar, M. Ahmad, M.F. Warsi, J. Magn. Magn. Mater. 419(3), 338 (2016)

    Article  CAS  Google Scholar 

  31. P. Binu, S. Thankachan, S. Xavier, E.M. Mohammed, J. Alloys Compd. 578, 314 (2013)

    Article  Google Scholar 

  32. S.A. Saafan, S.T. Assar, J. Magn. Magn. Mater. 324, 2989 (2012)

    Article  CAS  Google Scholar 

  33. M. Fayek, M. Mostafa, F. Sayedahmed, S. Ata-Allah, M. Kaiser, J. Magn. Magn. Mater. 210, 189 (2000)

    Article  CAS  Google Scholar 

  34. S.S. Ata-Allah, M. Kaiser, Phys. Status Solidi 242, 1324 (2005)

    Article  CAS  Google Scholar 

  35. A.R. Long, Adv. Phys. 31, 553 (1982)

    Article  CAS  Google Scholar 

  36. S. Hcini, A. Omri, M.L. Bouazizi, A. Dhahri, K. Touileb, J. Mater. Sci. Mater. Electron. 8674, 18 (2018)

    Google Scholar 

  37. H.F. Cheng, J. Appl. Phys. 56(6), 1831 (1984)

    Article  CAS  Google Scholar 

  38. A. Omri, E. Dhahri, B.F.O. Costa, M.A. Valente, J. Magn. Magn. Mater. 499, 166243 (2020)

    Article  CAS  Google Scholar 

  39. X. Wang, Q. Hu, G. Zang, C. Zhang, L. Li, Mater. Chem. Phys. 195, 157 (2017)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge Taif University Researchers Supporting Project number (TURSP-2020/249), Taif University, Taif, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Bakr Mohamed.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heiba, Z.K., Mohamed, M.B., Ghannam, M.M. et al. Structural and dielectric correlation in nano ZnMn2−xCrxO4. J Mater Sci: Mater Electron 32, 19529–19542 (2021). https://doi.org/10.1007/s10854-021-06472-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-06472-7

Navigation