Skip to main content
Log in

Study on the fabricated non-stoichiometric titanium dioxide by in-situ reduction with carbon powder via spark plasma sintering

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

A novel technology was proposed to fabricate non-stoichiometric titanium dioxide (TiO2−x) compacts in one-step thermal process by in-situ reduction of rutile TiO2 with carbon powder via spark plasma sintering (SPS). The rutile TiO2 powder was reduced with three different carbon powders for comparison, and the effect of the sintering conditions on the fabricated compacts was investigated. It is found that the in-situ reduction of rutile TiO2 with charcoal powder was easily achieved at a low pressure and high temperature (above 1473 K). Besides, the design of dynamic sintering pressure during SPS was proposed, and the results suggest that the dynamic sintering pressure contributes to the reduction of TiO2 and the fabrication of the compacts with high-density. In addition, density methods, X-ray diffraction, scanning electronic microscopy and laser micro-Raman spectrometer were performed to analyze the sintering sates, microstructures, crystal structures and phase distributions. The results show that a stable sintering environment without an increase in the pressure caused by reaction gas is a crucial role for the reduction of TiO2 and the TiO2−x fabrication, even the formation of Magnéli phases TinO2n−1. Finer charcoal powder is more conducive to fabricating the compact with a single Magnéli phase Ti6O11. It is expected to achieve a new breakthrough in fabrication method of the non-stoichiometric TiO2 by a safe and economically viable method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. F.J. Disalvo, Science 285, 703–705 (1999)

    Article  CAS  Google Scholar 

  2. G.J. Snyder, E.S. Toberer, Nat. Mater. 7, 105–114 (2008)

    Article  CAS  Google Scholar 

  3. G.P. Meisner, D.T. Morelli, S. Hu, J. Yang, C. Uher, Phys. Rev. Lett. 80, 3551–3554 (1998)

    Article  CAS  Google Scholar 

  4. C. Ou, A.L. Sangle, A. Datta, Q. Jing, T. Busolo, T. Chalklen, V. Narayan, S. Kar-Narayan, A.C.S. Appl, Mater. Inter. 10, 19580–19587 (2018)

    Article  CAS  Google Scholar 

  5. T. Favet, D. Ihiawakrim, V. Keller, T. Cottineau, Mat. Sci. Semicond. Process. 73, 22–29 (2018)

    Article  CAS  Google Scholar 

  6. T. Zhu, Y. Liu, C. Fu, J.P. Heremans, J.G. Snyder, X. Zhao, Adv. Mater. 29, 1605884 (2017)

    Article  Google Scholar 

  7. H. Liu, H. Ma, C. Wang, F. Wang, B. Liu, J. Chen, G. Ji, Y. Zhang, X. Jia, Ceram. Int. 44, 19859–19865 (2018)

    Article  CAS  Google Scholar 

  8. J. Schneider, M. Matsuoka, M. Takeuchi, J. Zhang, Y. Horiuchi, M. Anpo, D.W. Bahnemann, Chem. Rev. 114, 9919–9986 (2014)

    Article  CAS  Google Scholar 

  9. L. Yang, Z. Chen, M.S. Dargusch, J. Zou, Adv. Energy Mater. 8, 1701797 (2018)

    Article  Google Scholar 

  10. A.E. Shalan, M. Mohammed, N. Govindan, RSC Adv. 11(8), 4417–4424 (2021)

    Article  CAS  Google Scholar 

  11. H.R. An, S.Y. Park, H. Kim, C.Y. Lee, S. Choi, S.C. Lee, S. Seo, E.C. Park, Y.K. Oh, C.G. Song, J. Won, Y.J. Kim, J. Lee, H.U. Lee, Y.C. Lee, Sci. Rep. 6, 29683 (2016)

    Article  Google Scholar 

  12. N. Okinaka, T. Akiyama, Jpn. J. Appl. Phys. 45, 7009–7010 (2006)

    Article  CAS  Google Scholar 

  13. Q. He, Q. Hao, G. Chen, B. Poudel, X. Wang, D. Wang, Z. Ren, Appl. Phys. Lett. 91, 052505 (2007)

    Article  Google Scholar 

  14. C. Liu, L. Miao, J. Zhou, R. Huang, C. Fisher, S. Tanemura, J. Phys. Chem. C 117, 11487–11497 (2013)

    Article  CAS  Google Scholar 

  15. K. Fuda, T. Shoji, S. Kikuchi, Y. Kunihiro, S. Sugiyama, J. Electron. Mater. 42, 2209–2213 (2013)

    Article  CAS  Google Scholar 

  16. W. Fang, M. Xing, J. Zhang, J. Photochem. Photobiol. C 32, 21–39 (2017)

    Article  CAS  Google Scholar 

  17. I. Tsuyumoto, T. Hosono, M. Murata, J. Am. Ceram. Soc. 89(7), 2301–2303 (2006)

    CAS  Google Scholar 

  18. C. Tang, D. Zhou, Q. Zhang, Mater. Lett. 79, 42–44 (2012)

    Article  CAS  Google Scholar 

  19. M. Mikami, K. Ozaki, J. Phys. Conf. Ser. 379, 012006 (2012)

    Article  Google Scholar 

  20. S. Eslava, M. Mcpartlin, R.I. Thomson, J.M. Rawson, D.S. Wright, Inorg. Chem. 49, 11532–11540 (2010)

    Article  CAS  Google Scholar 

  21. Y. Lu, Y. Matsuda, K. Sagara, L. Hao, T. Otomitsu, H. Yoshida, Adv. Mater. Res. 415, 1291–1296 (2012)

    Google Scholar 

  22. L. Hao, Y. Kikuchi, H. Yoshida, Y. Jin, Y. Lu, J. Alloy. Compd. 722, 846–851 (2017)

    Article  CAS  Google Scholar 

  23. S. Conze, I. Veremchuk, M. Reibold, B. Matthey, A. Michaelis, Y. Grin, I. Kinski, J. Solid State Chem. 229, 235–242 (2015)

    Article  CAS  Google Scholar 

  24. A.A. Gusev, E.G. Avvakumov, A.Z. Medvedev, A.I. Masliy, Sci. Sinter. 39, 51–57 (2007)

    Article  CAS  Google Scholar 

  25. Y. Mikami, Development of the titanium oxynitride thermoelectric material, Report on achievements of scientific research grant. https://kaken.nii.ac.jp/file/KAKENHI-PROJECT-21760571/21760571seika.pdf. Accessed 19 March 2021

  26. S. Guan, L. Hao, H. Yoshida, Y. Lu, X. Zhao, Mater. Express 7, 509–515 (2017)

    Article  CAS  Google Scholar 

  27. L. Hao, S. Guan, Y. Lu, W. Qiu, Y. He, J. Liu, Surf. Coat. Tech. 291, 325–333 (2016)

    Article  CAS  Google Scholar 

  28. J.V. Badding, Annu. Rev. Mater. Sci. 28, 631–665 (1998)

    Article  CAS  Google Scholar 

  29. X.H. Wang, J.G. Li, H. Kamiyama, M. Katada, N. Ohashi, Y. Moriyoshi, T. Ishigaki, J. Am. Chem. Soc. 127, 10982–10990 (2005)

    Article  CAS  Google Scholar 

  30. H. Yanagita, Particle Engineering System (Applied Technologies Inc., Osaka, 2002), pp. 89–90

    Google Scholar 

  31. M. Ali, P. Basu, J. Alloy. Compd. 500, 220–223 (2010)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the Scientific Research Foundation of the Japan Society for the Promotion of Science (JSPS, No. JP19K05053) and the China Scholarship Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yun Lu.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Li, Z., Ohira, S. et al. Study on the fabricated non-stoichiometric titanium dioxide by in-situ reduction with carbon powder via spark plasma sintering. J Mater Sci: Mater Electron 32, 24698–24709 (2021). https://doi.org/10.1007/s10854-021-06861-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-06861-y

Navigation