Skip to main content
Log in

The influence of nickel substitution on the structural and gas sensing properties of sprayed ZnFe2O4 thin films

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

A comparative study of spray-deposited NixZn1−xFe2O4 (x = 0 to 0.5) thin films has been performed specifically on their structural and gas sensing properties. The films were characterized by X-ray diffraction and field emission scanning electron microscopy. The structural and morphological study reveal the formation of nanocrystalline cubic spinel structure with porous surface morphology. The Rietveld refinement study shows the crystalline structure and it gives proper atomic distribution among spinel sites. The gas sensing study indicates the selectivity of material toward SO2 gas. The study of dependence between the optimal operating temperature and nickel substitution shows a reduction in the operating temperature of the sensor. The optimized film with composition Ni0.3Zn0.7Fe2O4 shows the maximum response to SO2 gas at a lower operating temperature of 130 °C. These results can be applied in designing low energy consumption SO2 gas sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The authors confirm that the data supporting the findings of this study are available within the article.

References

  1. N. Aggarwal, S.B. Narang, Magnetic characterization of Nickel-Zinc spinel ferrites along with their microwave characterization in Ku band. J. Magn. Magn. Mater. 513, 167052 (2020). https://doi.org/10.1016/j.jmmm.2020.167052

    Article  CAS  Google Scholar 

  2. A.I. Tovstolytkin, M.M. Kulyk, V.M. Kalita, S.M. Ryabchenko, V.O. Zamorskyi, O.P. Fedorchuk, S.O. Solopan, A.G. Belous, Nickel-zinc spinel nanoferrites: magnetic characterization and prospects of the use in self-controlled magnetic hyperthermia. J. Magn. Magn. Mater. 473, 422–427 (2019). https://doi.org/10.1016/j.jmmm.2018.10.075

    Article  CAS  Google Scholar 

  3. T. Tsoncheva, I. Spassova, G. Issa, R. Ivanova, D. Kovacheva, D. Paneva, D. Karashanova, N. Velinov, B. Tsyntsarski, B. Georgieva, M. Dimitrov, N. Petrov, Ni0.5M0.5Fe2O4 (M = Cu, Zn) ferrites hosted in nanoporous carbon from waste materials as catalysts for hydrogen production. Waste Biomass Valoriz. 12, 1371–1384 (2021). https://doi.org/10.1007/s12649-020-01094-2

    Article  CAS  Google Scholar 

  4. S.A. Jadhav, S.B. Somvanshi, M.V. Khedkar, S.R. Patade, K.M. Jadhav, Magneto-structural and photocatalytic behavior of mixed Ni–Zn nano-spinel ferrites: visible light-enabled active photodegradation of rhodamine B. J. Mater. Sci. Mater. Electron. 31, 11352–11365 (2020). https://doi.org/10.1007/s10854-020-03684-1

    Article  CAS  Google Scholar 

  5. B. Gayathri Manju, P. Raji, Green synthesis of nickel–copper mixed ferrite nanoparticles: structural, optical, magnetic, electrochemical and antibacterial studies. J. Electron. Mater. 48, 7710–7720 (2019). https://doi.org/10.1007/s11664-019-07603-x

    Article  CAS  Google Scholar 

  6. A. Rahman, H. Abdullah, M.S. Zulfakar, M.J. Singh, M.T. Islam, Microwave dielectric properties of MnxZn(1–x)Fe2O4 ceramics and their compatibility with patch antenna. J. Sol-Gel Sci. Technol. 77, 470–479 (2016). https://doi.org/10.1007/s10971-015-3937-4

    Article  CAS  Google Scholar 

  7. P.T. Phong, P.H. Nam, D.H. Manh, D.K. Tung, I.-J. Lee, N.X. Phuc, Studies of the magnetic properties and specific absorption of Mn0.3Zn0.7Fe2O4 nanoparticles. J. Electron. Mater. 44, 287–294 (2015). https://doi.org/10.1007/s11664-014-3463-0

    Article  CAS  Google Scholar 

  8. M.V. Nikolic, Z.Z. Vasiljevic, M.D. Lukovic, V.P. Pavlovic, J.B. Krstic, J. Vujancevic, N. Tadic, B. Vlahovic, V.B. Pavlovic, Investigation of ZnFe2O4 spinel ferrite nanocrystalline screen-printed thick films for application in humidity sensing. Int. J. Appl. Ceram. Technol. 16, 981–993 (2019). https://doi.org/10.1111/ijac.13190

    Article  CAS  Google Scholar 

  9. V.D. Kapse, S.A. Ghosh, F.C. Raghuwanshi, S.D. Kapse, U.S. Khandekar, Nanocrystalline Ni0.6Zn0.4Fe2O4: a novel semiconducting material for ethanol detection. Talanta 78, 19–25 (2009). https://doi.org/10.1016/j.talanta.2008.10.031

    Article  CAS  Google Scholar 

  10. A.P. Kazin, M.N. Rumyantseva, V.E. Prusakov, I.P. Suzdalev, A.M. Gaskov, Nanocrystalline ferrites NixZn1−xFe2O4: influence of cation distribution on acidic and gas sensing properties. J. Solid State Chem. 184, 2799–2805 (2011). https://doi.org/10.1016/j.jssc.2011.08.029

    Article  CAS  Google Scholar 

  11. H.R. Ebrahimi, M. Parish, G.R. Amiri, B. Bahraminejad, S. Fatahian, Synthesis, characterization and gas sensitivity investigation of Ni0.5Zn0.5Fe2O4 nanoparticles. J. Magn. Magn. Mater. 414, 55–58 (2016). https://doi.org/10.1016/j.jmmm.2016.04.043

    Article  CAS  Google Scholar 

  12. S.P. Dalawai, T.J. Shinde, A.B. Gadkari, P.N. Vasambekar, Ni–Zn ferrite thick film gas sensors. J. Mater. Sci. Mater. Electron. 26, 9016–9025 (2015). https://doi.org/10.1007/s10854-015-3585-z

    Article  CAS  Google Scholar 

  13. S.B. Madake, M.R. Hattali, K.Y. Rajpure, Porogen induced formation of mesoporous zinc ferrite thin films and their chemiresistive properties. Mater. Sci. Eng. B 263, 114867 (2021). https://doi.org/10.1016/j.mseb.2020.114867

    Article  CAS  Google Scholar 

  14. S.S. Kumbhar, M.A. Mahadik, V.S. Mohite, Y.M. Hunge, K.Y. Rajpure, C.H. Bhosale, Effect of Ni content on the structural, morphological and magnetic properties of spray deposited Ni–Zn ferrite thin films. Mater. Res. Bull. 67, 47–54 (2015). https://doi.org/10.1016/j.materresbull.2015.02.056

    Article  CAS  Google Scholar 

  15. S.S. Kumbhar, M.A. Mahadik, V.S. Mohite, K.Y. Rajpure, C.H. Bhosale, Synthesis and characterization of spray deposited nickel–zinc ferrite thin films. Energy Procedia 54, 599–605 (2014). https://doi.org/10.1016/j.egypro.2014.07.301

    Article  CAS  Google Scholar 

  16. P. Surendran, A. Lakshmanan, S.S. Priya, K. Balakrishnan, P. Rameshkumar, T.A. Hegde, G. Vinitha, G. Ramalingam, A.A. Raj, Investigations on solid-state parameters of third-order nonlinear optical Ni1−xZnxFe2O4 nanoparticles synthesized by microwave-assisted combustion method. Appl. Phys. A 126, 257 (2020). https://doi.org/10.1007/s00339-020-3435-6

    Article  CAS  Google Scholar 

  17. J. Gao, Y. Cui, Z. Yang, The magnetic properties of NixZn1−xFe2O4 films fabricated by alternative sputtering technology. Mater. Sci. Eng. B 110, 111–114 (2004). https://doi.org/10.1016/j.mseb.2003.10.111

    Article  CAS  Google Scholar 

  18. D. Guo, Z. Zhang, M. Lin, X. Fan, G. Chai, Y. Xu, D. Xue, Ni–Zn ferrite films with high resonance frequency in the gigahertz range deposited by magnetron sputtering at room temperature. J. Phys. D 42, 125006 (2009). https://doi.org/10.1088/0022-3727/42/12/125006

    Article  CAS  Google Scholar 

  19. K. Momma, F. Izumi, VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 44, 1272–1276 (2011). https://doi.org/10.1107/S0021889811038970

    Article  CAS  Google Scholar 

  20. P. Sahoo, Surface topography, in: Tribology for Engineers (Elsevier, 2011), pp. 1–32. https://doi.org/10.1533/9780857091444.1

  21. A. Singh, A. Singh, S. Singh, P. Tandon, Fabrication of copper ferrite porous hierarchical nanostructures for an efficient liquefied petroleum gas sensor. Sens. Actuators B 244, 806–814 (2017). https://doi.org/10.1016/j.snb.2017.01.069

    Article  CAS  Google Scholar 

  22. X.-Z. Song, Y.-L. Meng, Z. Tan, L. Qiao, T. Huang, X.-F. Wang, Concave ZnFe2O4 hollow octahedral nanocages derived from Fe-doped MOF-5 for high-performance acetone sensing at low-energy consumption. Inorg. Chem. 56, 13646–13650 (2017). https://doi.org/10.1021/acs.inorgchem.7b02425

    Article  CAS  Google Scholar 

  23. Y. Lü, W. Zhan, Y. He, Y. Wang, X. Kong, Q. Kuang, Z. Xie, L. Zheng, MOF-templated synthesis of porous Co3O4 concave nanocubes with high specific surface area and their gas sensing properties. ACS Appl. Mater. Interfaces 6, 4186–4195 (2014). https://doi.org/10.1021/am405858v

    Article  CAS  Google Scholar 

  24. L. Li, J. Tan, M. Dun, X. Huang, Porous ZnFe2O4 nanorods with net-worked nanostructure for highly sensor response and fast response acetone gas sensor. Sens. Actuators 248, 85–91 (2017). https://doi.org/10.1016/j.snb.2017.03.119

    Article  CAS  Google Scholar 

  25. Y. Zou, H. Wang, R. Yang, X. Lai, J. Wan, G. Lin, D. Liu, Controlled synthesis and enhanced toluene-sensing properties of mesoporous NixCo1−xFe2O4 nanostructured microspheres with tunable composite. Sens. Actuators B 280, 227–234 (2019). https://doi.org/10.1016/j.snb.2018.10.030

    Article  CAS  Google Scholar 

  26. P. Karthick Kannan, R. Saraswathi, Impedimetric detection of alcohol vapours using nanostructured zinc ferrite. Talanta 129, 545–551 (2014). https://doi.org/10.1016/j.talanta.2014.06.028

    Article  CAS  Google Scholar 

  27. Q. Zhou, W. Zeng, W. Chen, L. Xu, R. Kumar, A. Umar, High sensitive and low-concentration sulfur dioxide (SO2) gas sensor application of heterostructure NiO–ZnO nanodisks. Sens. Actuators B 298, 126870 (2019). https://doi.org/10.1016/j.snb.2019.126870

    Article  CAS  Google Scholar 

  28. L.P. Belo, L.K. Elliott, R.J. Stanger, R. Spörl, K.V. Shah, J. Maier, T.F. Wall, High-temperature conversion of SO2 to SO3: homogeneous experiments and catalytic effect of fly ash from air and oxy-fuel firing. Energy Fuels 28, 7243–7251 (2014). https://doi.org/10.1021/ef5020346

    Article  CAS  Google Scholar 

  29. M.J. King, W.G. Davenport, M.S. Moats, Catalytic oxidation of SO2 to SO3, in: Sulfuric Acid Manufacture (Elsevier, 2013), pp. 73–90. https://doi.org/10.1016/B978-0-08-098220-5.00007-1

  30. B. Yang, C. Wang, R. Xiao, H. Yu, C. Huang, J. Wang, J. Xu, H. Liu, F. Xia, J. Xiao, High NH3 selectivity of NiFe2O4 sensing electrode for potentiometric sensor at elevated temperature. Anal. Chim. Acta 1089, 165–173 (2019). https://doi.org/10.1016/j.aca.2019.09.006

    Article  CAS  Google Scholar 

  31. N. Van Hoang, C.M. Hung, N.D. Hoa, N. Van Duy, I. Park, N. Van Hieu, Excellent detection of H2S gas at ppb concentrations using ZnFe2O4 nanofibers loaded with reduced graphene oxide. Sens. Actuators B 282, 876–884 (2019). https://doi.org/10.1016/j.snb.2018.11.157

    Article  CAS  Google Scholar 

  32. Y.-J. Hsiao, Y. Nagarjuna, C.-A. Tsai, S.-C. Wang, High selectivity Fe3O4 nanoparticle to volatile organic compound (VOC) for MEMS gas sensors. Mater. Res. Express 7, 065013 (2020). https://doi.org/10.1088/2053-1591/ab9bc7

    Article  CAS  Google Scholar 

  33. S. Palimar, S.D. Kaushik, V. Siruguri, D. Swain, A.E. Viegas, C. Narayana, N.G. Sundaram, Investigation of Ca substitution on the gas sensing potential of LaFeO3 nanoparticles towards low concentration SO2 gas. Dalton Trans. 45, 13547–13555 (2016). https://doi.org/10.1039/C6DT01819J

    Article  CAS  Google Scholar 

  34. A. Queraltó, D. Graf, R. Frohnhoven, T. Fischer, H. Vanrompay, S. Bals, A. Bartasyte, S. Mathur, LaFeO3 nanofibers for high detection of sulfur-containing gases. ACS Sustain. Chem. Eng. 7, 6023–6032 (2019). https://doi.org/10.1021/acssuschemeng.8b06132

    Article  CAS  Google Scholar 

  35. C. Aranthady, T. Jangid, K. Gupta, A.K. Mishra, S.D. Kaushik, V. Siruguri, G.M. Rao, G.V. Shanbhag, N.G. Sundaram, Selective SO2 detection at low concentration by Ca substituted LaFeO3 chemiresistive gas sensor: a comparative study of LaFeO3 pellet vs thin film. Sens. Actuators B 329, 129211 (2021). https://doi.org/10.1016/j.snb.2020.129211

    Article  CAS  Google Scholar 

Download references

Acknowledgements

All authors are thankful to the University Grant Commission (UGC) for the DSA-SAP Phase-II Program and the Department of Science and Technology (DST), Government of India for the PURSE Phase-II Program through which research facilities were made available in the Department of Physics, Shivaji University, Kolhapur.

Author information

Authors and Affiliations

Authors

Contributions

SBM contributed to investigation, methodology, software, and writing and preparation of the original draft. ARP contributed to methodology and software. RSP contributed to software and formal analysis. NAN contributed to visualization and formal analysis. JBT contributed to conceptualization, formal analysis, and writing and preparation of the original draft. KYR contributed to supervision, conceptualization, resource, and writing, reviewing, and editing of the manuscript.

Corresponding author

Correspondence to K. Y. Rajpure.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Madake, S.B., Patil, A.R., Pedanekar, R.S. et al. The influence of nickel substitution on the structural and gas sensing properties of sprayed ZnFe2O4 thin films. J Mater Sci: Mater Electron 33, 6273–6282 (2022). https://doi.org/10.1007/s10854-022-07802-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-07802-z

Navigation