Skip to main content

Advertisement

Log in

Friction coefficients and wear rates of different orthodontic archwires in artificial saliva

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

The aim of this paper is to analyze the influence of the nature of the orthodontic archwires on the friction coefficient and wear rate against materials used commonly as brackets (Ti–6Al–4V and 316L Stainless Steel). The materials selected as orthodontic archwires were ASI304 stainless steel, NiTi, Ti, TiMo and NiTiCu. The array archwire’s materials selected presented very similar roughness but different hardness. Materials were chosen from lower and higher hardness degrees than that of the brackets. Wear tests were carried out at in artificial saliva at 37 °C. Results show a linear relationship between the hardness of the materials and the friction coefficients. The material that showed lower wear rate was the ASI304 stainless steel. To prevent wear, the wire and the brackets have high hardness values and in the same order of magnitude.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Daems J, Celis JP, Willems G. Morphological characterization of as-received and in vivo orthodonti11c stainless steel archwires. Eur J Orthod. 2009;31:260–5.

    Article  Google Scholar 

  2. Verstrynge A, van Humbeeck J, Willems G. In-vitro evaluation of the material characteristics of stainless steel and beta-titanium orthodontic wires. Am J Orthod Dentofac Orthop. 2006;130:460–70.

    Article  Google Scholar 

  3. Schiff N, Grosgogeat B, Lissac M, Dalard F. Influence of fluoridated mouthwashes on corrosion resistance of orthodontic wires. Biomaterials. 2004;25:4535–42.

    Article  CAS  Google Scholar 

  4. Kim H, Johnson JW. Corrosion of stainless steel, nickel–titanium, coated nickel–titanium, and titanium orthodontic wires. Angle Orthod. 1999;69:39–44.

    CAS  Google Scholar 

  5. Pereira MC, Pereira ML, Sousa JP. Histological effects of iron accumulation on mice liver and spleen after administration of a metallic solution. Biomaterials. 1999;20:2193–8.

    Article  CAS  Google Scholar 

  6. Bourauel C, Fries T, Drescher D, Plietsch R. Surface roughness of orthodontic wires via atomic force microscopy, laser specular reflectance, and profilometry. Eur J Orthod. 1998;20:79–92.

    Article  CAS  Google Scholar 

  7. Schiff N, Boinet M, Morgon L, Lissac M, Dalard F, Grosgeat B. Galvanic corrosion between orthodontic wires and brackets in flouride mouthwashes. Eur J Orthod. 2006;28:298–304.

    Article  Google Scholar 

  8. Oh KT, Kim KN. Ion release and citotoxicity of stainless steel wires. Eur J Orthod. 2005;27:533–40.

    Article  Google Scholar 

  9. Fischer-Brandies H, Es-Souni M, Kock N, Raetzke K, Bock O. Transformation behavior, chemical composition, surface topography and bending properties of five selected 0.016 × 0.022″ NiTi archwires. J Orofac Orthop. 2003;64:88–99.

    Article  Google Scholar 

  10. Ogawa T, Yokoyama K, Asaoka K, Sakai J. Hydrogen absorption behavior of beta-titanium alloy in acid fluoride solutions. Biomaterials. 2004;25:2419–25.

    Article  CAS  Google Scholar 

  11. Espinar E, Llamas JM, Michiardi A, Ginebra MP, Gil FJ. Reduction of Ni release and improvement of the friction behavior of NiTi orthodontic archwires by oxidation treatments. J Mater Sci Mater Med. 2011;22:1119–25.

    Article  CAS  Google Scholar 

  12. Suárez C, Vilar T, Gil J, Sevilla P. In vitro evaluation of surface topographic changes and nickel release of lingual orthodontic archwires. J Mater Sci Mater Med. 2010;21:675–83.

    Article  Google Scholar 

  13. Michiardi A, Aparicio C, Planell JA, Gil FJ. New oxidation treatment of NiTi shape memory alloys to obtain Ni-free surfaces and to improve biocompatibility. J Biomed Mater Res Appl Biomat. 2006;77B:249–56.

    Article  CAS  Google Scholar 

  14. Gil FJ, Solano E, Mendoza A, Peña J. Inhibition of Ni release from NiTi and NiTiCu orthodontic archwires by nitrogen diffusion treatment. J Appl Biomater Biomech. 2004;2:151–5.

    CAS  Google Scholar 

  15. Kerosuo H, Kullaa A, Kerosuo E, Kanerva L, Hensten-Petterson A. Nickel allergy in adolescents in relation to orthodontic treatment and piercing of ears. Am J Orthod Dentofac Orthop. 1996;109:148–54.

    Article  CAS  Google Scholar 

  16. Berger-Gorbet M, Broxup B, Rivard C. L’H. Yahia. Biocompatibility testing of Ni-Ti screw using immuno histochemistry on sections containing metallic implants. J Biomed Mater Res. 1996;32:243–8.

    Article  CAS  Google Scholar 

  17. International Agency for Research on Cancer. Monographs on the evaluation of carcinogenic risk of chemicals to humans. Lyon: IARC; 1996.

    Google Scholar 

  18. Grimsdottir MR, Hensten-Pettersen A, Kulmann A. Cytotoxic effect of orthodontic appliances. Eur J Orthod. 1992;14:47–53.

    Article  CAS  Google Scholar 

  19. Kusy RP. Orthodontic biomechanics: vistas from the top of a new century. Am J Orthod Dentofac Orthop. 2000;117:589–91.

    Article  CAS  Google Scholar 

  20. Thorstenson GA, Kusy RP. Effect of archwire size and material on the resistance to sliding of self-ligating brackets with second-order angulation in the dry state. Am J Orthod Dentofac Orthop. 2002;122:295–305.

    Article  Google Scholar 

  21. Kusy RP. Influence on binding of third-order torque to second-order angulation. Am J Orthod Dentofac Orthop. 2004;125:726–32.

    Article  Google Scholar 

  22. Griffiths HS, Sherriff M, Ireland AJ. Resistance to sliding with 3 types of elastomeric modules. Am J Orthod Dentofac Orthop. 2005;127(670–675):754.

    Google Scholar 

  23. Marques IS, Araújo AM, Gurgel JA, Normando D. Debris, roughness and friction of stainless steel archwires following clinical use. Angle Orthod. 2010;80(3):521–7.

    Article  Google Scholar 

  24. Umal H, Doshia A, Bhad-Patil WA. Static frictional force and surface roughness of various bracket and wire combinations. Am J Orthod Dentofac Orthop. 2011;139:74–9.

    Article  Google Scholar 

  25. Gal J, Fovet Yannick, Adib-Yadzi M. About a synthetic saliva for in vitro studies. Talanta. 2001;53:1103–15.

    Article  CAS  Google Scholar 

  26. Boyer R, Welsch GW, Collings EW. Materials properties handbook:titanium alloys. Ohio: ASM; 1994. p. 125–30.

    Google Scholar 

  27. Normando D, de Araújo AM, da Silva Vieira IS, Gilda C, Tavares B, Mendes JA. Archwire cleaning after intraoral ageing: the effects on debris, roughness, and friction. Eur J Orthod Adv. 2011;19:201–17.

    Google Scholar 

Download references

Acknowledgments

The authors are grateful to the CICYT MAT 13547 and Generalitat de Catalunya and Andorra Government (CTP project) for funding the present study. The authors do not have conflict of interest associated with this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. J. Gil.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alfonso, M.V., Espinar, E., Llamas, J.M. et al. Friction coefficients and wear rates of different orthodontic archwires in artificial saliva. J Mater Sci: Mater Med 24, 1327–1332 (2013). https://doi.org/10.1007/s10856-013-4887-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-013-4887-4

Keywords

Navigation