Skip to main content

Advertisement

Log in

Treatment of pediatric spinal deformity with use of recombinant human bone morphogenetic protein-2

  • Clinical Applications of Biomaterials
  • Original Research
  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

In pediatric spine surgery nonunion is a challenging issue. Instability may cause neurological impairment and lead to numerous surgeries in order to achieve fusion. The use of rhBMP-2 for pediatric spinal fusion has not been widely reported. In this study, a series of 13 children (14 procedures) that underwent spinal rhBMP-2 application were analyzed in order to measure clinical and radiographic outcome. Therefore, patient data, diagnosis, construct of instrumentation, type of bone graft, quantity of BMP used, and fusion outcome were reviewed. The study cohort included four female and nine male patients with a mean age of 11.2 years (range 2.6–19.2 years) at the time of rhBMP-2 application. Rh-BMP-2 was used in both primary (n = 6) and revision surgery (n = 8) in patients with a high risk for the development of nonunion. The mean follow-up was 51 months (range 12–108 months). Fusion occurred in 11 patients. Complications that may be due to application of rhBMP-2 were seen after four operations. Three patients had an increased body temperature and in one case prolonged wound secretion was evident, treated by local wound care or observation. In one of these patients an extensive postoperative hematoma occurred, necessitating surgical treatment. In conclusion, we could detect high fusion rates following the use of rhBMP-2 in pediatric spine surgery without an increased complication rate attributable to its application. Therefore we consider recombinant human BMP-2 to be an option in selected pediatric spinal procedures, especially in cases with compromised bone healing due to congenital, systemic, or local conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Termaat MF, Den Boer FC, Bakker FC, Patka P, Haarman HJ. Bone morphogenetic proteins. Development and clinical efficacy in the treatment of fractures and bone defects. J Bone Jt Surg Am. 2005;87:1367–78. https://doi.org/10.2106/JBJS.D.02585.

    Article  CAS  Google Scholar 

  2. Sampath TK, Maliakal JC, Hauschka PV, Jones WK, Sasak H, Tucker RF, White KH, Coughlin JE, Tucker MM, Pang RH, et al. Recombinant human osteogenic protein-1 (hOP-1) induces new bone formation in vivo with a specific activity comparable with natural bovine osteogenic protein and stimulates osteoblast proliferation and differentiation in vitro. J Biol Chem. 1992;267:20352–62.

    CAS  Google Scholar 

  3. Stiel N, Hissnauer TN, Rupprecht M, Babin K, Schlickewei CW, Rueger JM, Stuecker R, Spiro AS. Evaluation of complications associated with off-label use of recombinant human bone morphogenetic protein-2 (rhBMP-2) in pediatric orthopaedics. J Mater Sci Mater Med. 2016;27:184. https://doi.org/10.1007/s10856-016-5800-8.

    Article  Google Scholar 

  4. Hissnauer TN, Stiel N, Babin K, Rupprecht M, Ridderbusch K, Rueger JM, Stuecker R, Spiro AS. Recombinant human bone morphogenetic protein-2 (rhBMP-2) for the treatment of nonunion of the femur in children and adolescents: A retrospective analysis. Biomed Res Int. 2017;2017:3046842. https://doi.org/10.1155/2017/3046842.

    Article  Google Scholar 

  5. Jain A, Kebaish KM, Sponseller PD. Factors associated with use of bone morphogenetic protein during pediatric spinal fusion surgery: an analysis of 4817 patients. J Bone Jt Surg Am. 2013;95:1265–70. https://doi.org/10.2106/JBJS.L.01118.

    Article  Google Scholar 

  6. Modi HN, Suh SW, Hong JY, Cho JW, Park JH, Yang JH. Treatment and complications in flaccid neuromuscular scoliosis (Duchenne muscular dystrophy and spinal muscular atrophy) with posterior-only pedicle screw instrumentation. Eur Spine J: Off Publ Eur Spine Soc, Eur Spinal Deform Soc, Eur Sect Cerv Spine Res Soc. 2010;19:384–93. https://doi.org/10.1007/s00586-009-1198-z.

    Article  Google Scholar 

  7. McMaster MJ. Anterior and posterior instrumentation and fusion of thoracolumbar scoliosis due to myelomeningocele. J Bone Jt Surg Br. 1987;69:20–5.

    Article  CAS  Google Scholar 

  8. Fahim DK, Whitehead WE, Curry DJ, Dauser RC, Luerssen TG, Jea A. Routine use of recombinant human bone morphogenetic protein-2 in posterior fusions of the pediatric spine: safety profile and efficacy in the early postoperative period. Neurosurgery. 2010;67:1195–204. https://doi.org/10.1227/NEU.0b013e3181f258ba.

    Article  Google Scholar 

  9. Rocque BG, Kelly MP, Miller JH, Li Y, Anderson PA. Bone morphogenetic protein-associated complications in pediatric spinal fusion in the early postoperative period: an analysis of 4658 patients and review of the literature. J Neurosurg Pediatr. 2014;14:635–43. https://doi.org/10.3171/2014.8.PEDS13665.

    Article  Google Scholar 

  10. Sayama C, Willsey M, Chintagumpala M, Brayton A, Briceno V, Ryan SL, Luerssen TG, Hwang SW, Jea A. Routine use of recombinant human bone morphogenetic protein-2 in posterior fusions of the pediatric spine and incidence of cancer. J Neurosurg Pediatr. 2015;16:4–13. https://doi.org/10.3171/2014.10.PEDS14199.

    Article  Google Scholar 

  11. Burkus JK, Gornet MF, Dickman CA, Zdeblick TA. Anterior lumbar interbody fusion using rhBMP-2 with tapered interbody cages. J Spinal Disord Tech. 2002;15:337–49.

    Article  Google Scholar 

  12. Schimandle JH, Boden SD, Hutton WC. Experimental spinal fusion with recombinant human bone morphogenetic protein-2. Spine. 1995;20:1326–37.

    Article  CAS  Google Scholar 

  13. Sandhu HS, Kanim LE, Kabo JM, Toth JM, Zeegan EN, Liu D, Seeger LL, Dawson EG. Evaluation of rhBMP-2 with an OPLA carrier in a canine posterolateral (transverse process) spinal fusion model. Spine. 1995;20:2669–82.

    Article  CAS  Google Scholar 

  14. Poynton AR, Lane JM. Safety profile for the clinical use of bone morphogenetic proteins in the spine. Spine. 2002;27(16 Suppl 1):S40–8.

    Article  Google Scholar 

  15. Smith DM, Cooper GM, Mooney MP, Marra KG, Losee JE. Bone morphogenetic protein 2 therapy for craniofacial surgery. J Craniofac Surg. 2008;19:1244–59. https://doi.org/10.1097/SCS.0b013e3181843312.

    Article  Google Scholar 

  16. Govender S, Csimma C, Genant HK, Valentin-Opran A, Amit Y, Arbel R, Aro H, Atar D, Bishay M, Borner MG, Chiron P, Choong P, Cinats J, Courtenay B, Feibel R, Geulette B, Gravel C, Haas N, Raschke M, Hammacher E, van der Velde D, Hardy P, Holt M, Josten C, Ketterl RL, Lindeque B, Lob G, Mathevon H, McCoy G, Marsh D, Miller R, Munting E, Oevre S, Nordsletten L, Patel A, Pohl A, Rennie W, Reynders P, Rommens PM, Rondia J, Rossouw WC, Daneel PJ, Ruff S, Ruter A, Santavirta S, Schildhauer TA, Gekle C, Schnettler R, Segal D, Seiler H, Snowdowne RB, Stapert J, Taglang G, Verdonk R, Vogels L, Weckbach A, Wentzensen A, Wisniewski T, Group BMPEiSfTTS. Recombinant human bone morphogenetic protein-2 for treatment of open tibial fractures: a prospective, controlled, randomized study of four hundred and fifty patients. J Bone Jt Surg Am Vol 84-A. 2002;12:2123–34.

    Article  Google Scholar 

  17. Mannion RJ, Nowitzke AM, Wood MJ. Promoting fusion in minimally invasive lumbar interbody stabilization with low-dose bone morphogenic protein-2--but what is the cost? Spine J. 2011;11:527–33. https://doi.org/10.1016/j.spinee.2010.07.005.

    Article  Google Scholar 

  18. Joseph V, Rampersaud YR. Heterotopic bone formation with the use of rhBMP2 in posterior minimal access interbody fusion: a CT analysis. Spine. 2007;32:2885–90. https://doi.org/10.1097/BRS.0b013e31815b7596.

    Article  Google Scholar 

  19. Shields LB, Raque GH, Glassman SD, Campbell M, Vitaz T, Harpring J, Shields CB. Adverse effects associated with high-dose recombinant human bone morphogenetic protein-2 use in anterior cervical spine fusion. Spine. 2006;31:542–47. https://doi.org/10.1097/01.brs.0000201424.27509.72.

    Article  Google Scholar 

  20. Smucker JD, Rhee JM, Singh K, Yoon ST, Heller JG. Increased swelling complications associated with off-label usage of rhBMP-2 in the anterior cervical spine. Spine. 2006;31:2813–19. https://doi.org/10.1097/01.brs.0000245863.52371.c2.

    Article  Google Scholar 

  21. Hansen SM, Sasso RC. Resorptive response of rhBMP2 simulating infection in an anterior lumbar interbody fusion with a femoral ring. J Spinal Disord Tech. 2006;19:130–4. https://doi.org/10.1097/01.bsd.0000168512.61351.3a.

    Article  Google Scholar 

  22. Bess S, Line BG, Lafage V, Schwab F, Shaffrey CI, Hart RA, Boachie-Adjei O, Akbarnia BA, Ames CP, Burton DC, Deverin V, Fu KM, Gupta M, Hostin R, Kebaish K, Klineberg E, Mundis G, O’Brien M, Shelokov A, Smith JS, InternationalSpine Study Group I. Does recombinant human bone morphogenetic protein-2 use in adult spinal deformity increase complications and are complications associated with location of rhBMP-2 use? A prospective, multicenter study of 279 consecutive patients. Spine. 2014;39:233–42. https://doi.org/10.1097/BRS.0000000000000104.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander S. Spiro.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stiel, N., Stuecker, R., Kunkel, P. et al. Treatment of pediatric spinal deformity with use of recombinant human bone morphogenetic protein-2. J Mater Sci: Mater Med 29, 93 (2018). https://doi.org/10.1007/s10856-018-6104-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10856-018-6104-y

Navigation