Skip to main content

Advertisement

Log in

Scaffolds of PCL combined to bioglass: synthesis, characterization and biological performance

  • Tissue Engineering Constructs and Cell Substrates
  • Original Research
  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Biomaterials may be useful in filling lost bone portions in order to restore balance and improve bone regeneration. The objective of this study was to produce polycaprolactone (PCL) membranes combined with two types of bioglass (Sol–Gel and melt-quenched) and determine their physical and biological properties. Membranes were produced through electrospinning. This study presented three experimental groups: pure PCL membranes, PCL-Melt-Bioglass and PCL-Sol-gel-Bioglass. Membranes were characterized using Scanning Electron Microscopy, Fourier Transform Infrared Spectrophotometry (FTIR), Energy-Dispersive Spectroscopy and Zeta Potential. The following in vitro tests were performed: MTT assay, alkaline phosphatase activity, total protein content and mineralization nodules. Twenty-four male rats were used to observe biological performance through radiographic, fracture energy, histological and histomorphometric analyses. The physical and chemical analysis results showed success in manufacturing bioactive membranes which significantly enhanced cell viability and osteoblast differentiation. The new formed bone from the in vivo experiment was similar to that observed in the control group. In conclusion, the electrospinning enabled preparing PCL membranes with bioglass incorporated into the structure and onto the surface of PCL fibers. The microstructure of the PCL membranes was influenced by the bioglass production method. Both bioglasses seem to be promising biomaterials to improve bone tissue regeneration when incorporated into PCL.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Devlin H, Ferguson MW. Alveolar ridge resorption and mandibular atrophy. A review of the role of local and systemic factors. Br Dent J. 1991;170:101–4.

    Article  CAS  Google Scholar 

  2. Sjögren U, Hänström L, Happonen Rp, Sundqvist G. Extensive bone loss associated with periapical infection with Bacteroides gingivalis: a case report. Int Endod J. 1990;23:254–62.

    Article  Google Scholar 

  3. Quan J, Hou Y, Long W, Ye S, Wang Z. Characterization of different osteoclast phenotypes in the progression of bone invasion by oral squamous cell carcinoma. Oncol Rep. 2018;39:1043–51.

    CAS  Google Scholar 

  4. Aaboe M, Pinholt EM, Hjorting-Hansen E. Healing of experimentally created defects: a review. Br J Oral Maxillofac Surg. 1995;33:312–8.

    Article  CAS  Google Scholar 

  5. Savadori T, Del F. Synthetic blocks for bone regeneration: a systematic review and meta-analysis. Int J Mol Sci. 2019;20:4221

    Article  Google Scholar 

  6. Elgali I, Omar O, Dahlin C, Thomsen P. Guided bone regeneration: materials and biological mechanisms revisited. Eur J Oral Sci. 2017;125:315–37.

    Article  Google Scholar 

  7. Labet M, Thielemans W. Synthesis of polycaprolactone: a review. Chem Soc Rev. 2009;38:3484–504.

    Article  CAS  Google Scholar 

  8. Allafchian A, Jalali SAH, Mousavi SE, Hosseini SS. Preparation of cell culture scaffolds using polycaprolactone/quince seed mucilage. Int J Biol Macromol. 2019. pii: S0141-8130(19)37098-9. https://doi.org/10.1016/j.ijbiomac.2019.11.096. [Epub ahead of print].

  9. Baino F, Hamzehlou S, Kargozar S. Bioactive glasses: where are we and where are we going?. J Funct Biomater. 2018;9:E25. https://doi.org/10.3390/jfb9010025.

    Article  CAS  Google Scholar 

  10. Lefebvre L, Chevalier J, Gremillard L, Zenati R, Thollet G, Bernache-Assolant D, et al. Structural transformations of bioactive glass 45S5 with thermal treatments. Acta Mater. 2007;55:3305–13.

    Article  CAS  Google Scholar 

  11. Santos JD, Sato TP, Lima AL, de, Nogueira AS, Quishida CCC, Borges ALS. Titanium dioxide and polyethylmethacrylate electrospun nanofibers: assessing the technique parameters and morphological characterization. Brazilian Dent Sci. 2019;22:70–8.

    Article  Google Scholar 

  12. Zhang L, Chan C. Isolation and enrichment of rat mesenchymal stem cells (MSCs) and separation of single-colony derived MSCs. J Vis Exp. 2010;22:1852. https://doi.org/10.3791/1852

    Article  CAS  Google Scholar 

  13. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951;193:265–75.

    CAS  Google Scholar 

  14. Prado RF, do, de Oliveira FS, Nascimento RD, de Vasconcellos LMR, Carvalho YR, Cairo CAA. Osteoblast response to porous titanium and biomimetic surface: in vitro analysis. Mater Sci Eng C Mater Biol Appl. 2015;52:194–203.

    Article  CAS  Google Scholar 

  15. Barber HD, Lignelli J, Smith BM, Bartee BK. Using a dense PTFE membrane without primary closure to achieve bone and tissue regeneration. J Oral Maxillofac Surg. 2007;65:748–52.

    Article  Google Scholar 

  16. Lee S-W, Kim S-G. Membranes for the guided bone regeneration. Maxillofac Plast Reconstr Surg. 2014;36:239–46.

    Article  CAS  Google Scholar 

  17. Li Y, Liao C, Tjong SC. Synthetic biodegradable aliphatic polyester nanocomposites reinforced with nanohydroxyapatite and/or graphene oxide for bone tissue engineering applications. Nanomaterials. 2019;9:E590.

    Article  Google Scholar 

  18. Filgueiras MR, La Torre G, Hench LL. Solution effects on the surface reactions of a bioactive glass. J Biomed Mater Res. 1993;27:445–53.

    Article  CAS  Google Scholar 

  19. Sepulveda P, Jones JR, Hench LL. Characterization of melt-derived 45S5 and sol-gel-derived 58S bioactive glasses. J Biomed Mater Res 2001;58:734–40.

    Article  CAS  Google Scholar 

  20. Murphy C, Kolan K, Li W, Semon JA, Semon J, Day D, et al. 3D bioprinting of stem cells and polymer/bioactive glass composite scaffolds for bone tissue engineering. Int J Bioprint. 2017;3:53–63.

    Article  Google Scholar 

  21. Poh PSP, Hutmacher DW, Holzapfel BM, Solanki AK, Stevens MM, Woodruff MA. In vitro and in vivo bone formation potential of surface calcium phosphate-coated polycaprolactone and polycaprolactone/bioactive glass composite scaffolds. Acta Biomater. 2016;30:319–33.

    Article  CAS  Google Scholar 

  22. Shahin-Shamsabadi A, Hashemi A, Tahriri M, Bastami F, Salehi M, Mashhadi Abbas F. Mechanical, material, and biological study of a PCL/bioactive glass bone scaffold: importance of viscoelasticity. Mater Sci Eng C Mater Biol Appl. 2018;90:280–8.

    Article  CAS  Google Scholar 

  23. Rajzer I, Dziadek M, Kurowska A, Cholewa-Kowalska K, Ziabka M, Menaszek E, et al. Electrospun polycaprolactone membranes with Zn-doped bioglass for nasal tissues treatment. J Mater Sci Mater Med. 2019;30:80–91.

    Article  Google Scholar 

  24. Arcos D, Vallet-Regí M. Sol-gel silica-based biomaterials and bone tissue regeneration. Acta Biomater. 2010;6:2874–88.

    Article  CAS  Google Scholar 

  25. Hench LL. Sol-gel materials for bioceramic applications. Curr Opin Solid State Mater Sci. 1997;2:604–10.

    Article  CAS  Google Scholar 

  26. Lowry GV, Hill RJ, Harper S, Rawle AF, Hendren CO, Klaessig F, et al. Guidance to improve the scientific value of zeta-potential measurements in nanoEHS. Environ Sci Nano. 2016;3:953–65.

    Article  CAS  Google Scholar 

  27. Woodward SC, Brewer PS, Moatamed F, Schindler A, Pitt CG. The intracellular degradation of poly(ε‐caprolactone). J Biomed Mater Res. 1985;19:437–44.

    Article  CAS  Google Scholar 

  28. Ng KW, Achuth HN, Moochhala S, Lim TC, Hutmacher DW. In vivo evaluation of an ultra-thin polycaprolactone film as a wound dressing. J Biomater Sci Polym Ed. 2007;18:925–38.

    Article  CAS  Google Scholar 

  29. Gomes SR, Rodrigues G, Martins GG, Roberto MA, Mafra M, Henriques CMR, et al. In vitro and in vivo evaluation of electrospun nanofibers of PCL, chitosan and gelatin: a comparative study. Mater Sci Eng C. 2015;46:348–58.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the Fundação de Amparo à Pesquisa do Estado de São Paulo—FAPESP, for the scholarship process no. 17/04389-0. We thank the Coordination for the Improvement of Higher Education (CAPES—Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, Brasil)—Finance Code 001, in São José dos Campos, Brazil.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renata Falchete do Prado.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

da Fonseca, G.F., Avelino, S.d.O.M., Mello, D.d.C.R. et al. Scaffolds of PCL combined to bioglass: synthesis, characterization and biological performance. J Mater Sci: Mater Med 31, 41 (2020). https://doi.org/10.1007/s10856-020-06382-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10856-020-06382-w

Navigation