Skip to main content
Log in

Molecular Modeling Study of Drug-DNA Combined to Single Walled Carbon Nanotube

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

One of the applications of nanotechnology is use of carbon nanotubes for the targeted delivery of drug molecules. To demonstrate the physical and chemical properties of biomolecules and identify new material of drug properties, the interaction of carbon nanotubes (CNTs) with biomolecules is a subject of many investigations. CNTs is a synthetic compound with extraordinary mechanical, thermal, electrical, optical, and chemical properties widely applied for technological purposes. In this article we have tried to investigate thermodynamic parameters and dielectric effects in different solvents for one of the most famous anticancer drug “cisplatin” combined to SWCNT, by Monte Carlo and density functional theory (DFT) calculations. Cause of platinum element in cisplatin we have done calculations as Gibbs free energy, thermal enthalpy, thermal energy and entropy at 6-31G** basis set with SCRF model of solvent. In this work, the major point has been embedded that results of both two methods of Monte Carlo and DFT can overlap with each other and cisplatin- SWCNT is a suitable compound for drug delivery in different media.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. M. Peyrone (1844). Ann. Chemie. Pharm. 51(1), 1.

    Article  Google Scholar 

  2. T. Stephen (2005). C&EN News 83, 25.

    Google Scholar 

  3. B. Rosenberg, L. Van Camp, and T. Krigas (1965). Nature 205(4972), 698.

    Article  CAS  Google Scholar 

  4. B. Rosenberg, L. Van Camp, E. B. Grimley, and A. J. Thomson (1967). J. Biol. Chem. 242(6), 1347.

    CAS  Google Scholar 

  5. A. J. Thomson, D. A. Christie, and E. M. Tansey (2007). Wellcome Trust Witnesses to Twentieth Century Medicine 30, 6.

    Google Scholar 

  6. B. Rosenberg, L. Vancamp, J. E. Trosko, and V. H. Mansour (1969). Nature 222(5191), 385.

    Article  CAS  Google Scholar 

  7. F. G. Pruefer, F. Lizarraga, V. Maldonado, and J. Melendez-Zajgla (2008). J. Chemother. 20, 348.

    CAS  Google Scholar 

  8. A. Bianco, K. Kostarelos, and M. Prato (2005). Curr. Opin. Biotechnol. 9, 674.

    Article  CAS  Google Scholar 

  9. M. Khalehian, M. Zahmatkesh, F. Mollaamin, and M. Monajjemi (2011). Fullerenes, Nanotubes, and Carbon Nanostructures 19(4), 251.

    Article  Google Scholar 

  10. B. Ghalandari, M. Monajjemi, and F. Mollaamin (2011). J. Comput. Theor. Nanosci. 8(7), 1212.

    Article  CAS  Google Scholar 

  11. M. Monajjemi, L. Mahdavian, and F. Mollaamin (2008). Bull. Chem. Soc. Ethiop. 22(2), 1.

    Google Scholar 

  12. M. Monajjemi, L. Mahdavian, F. Mollaamin, and M. Khaleghian (2009). Russ. J. Inorg. Chem. 54(9), 14651473.

    Article  Google Scholar 

  13. T. Ramanathan, F. T. Fisher, R. S. Ruoff, and L. C. Brinson (2005). Chem. Mater. 17(6), 1290.

    Article  CAS  Google Scholar 

  14. A. Star, E. Tu, J. Niemann, J. Christophe, P. Gabriel, C. S. Joiner, and C. Valcke (2006). Proc. Nat. Acad. Sci. 103(4), 921.

    Article  CAS  Google Scholar 

  15. C. Hu, Y. Zhang, G. Bao, Y. Zhang, M. Liu, and Z. L. Wang (2005). J. Phys. Chem. B 109(43), 20072.

    Article  CAS  Google Scholar 

  16. M. E. Hughes, E. Brandin, and J. A. Golovchenko (2007). Nano. Lett. 7(5), 1191.

    Article  CAS  Google Scholar 

  17. M. Kastner (2010). Commun. Nonlinear Sci. Numer. Simul. 15, 1589.

    Article  Google Scholar 

  18. M. Monajjemi, S. Ketabi, H. Zadeh, and A. Amiri (2006). Biochemistry (Mosc) 71(S1), S1.

    Article  CAS  Google Scholar 

  19. M. Monajjemi, S. Ketabi, and A. Amiri (2006). Russ. J. Phys. Chem. A 80(S1), S55.

    Article  CAS  Google Scholar 

  20. Hypercube, Inc., Gainesville, FL, USA.

  21. M. J. Frisch et al, in GAUSSIAN 03, Revision C.02 (Gaussian Inc., Wallingford, CT, 2004).

  22. M. Monajjemi, M. H. Razavian, F. Mollaamin, F. Naderi, and B. Honarparvar (2008). Russ. J. Phys. Chem. A 82(13), 113.

    Article  Google Scholar 

  23. F. Mollaamin, M. T. Baei, M. Monajjemi, R. Zhiani, and B. Honarparvar (2008). Russ. J. Phys. Chem. A 82(13), 2354.

    Article  CAS  Google Scholar 

  24. A. Maiti (2008). Microelectronics 39(20), 208.

    Article  CAS  Google Scholar 

  25. D. Srivastava and S. N. Atluri (2002). Comput. Model. Eng. Sci. 3(5), 531.

    Google Scholar 

  26. A. D. Beck (1993). J. Chem. Phys. 98(7), 5648.

    Article  Google Scholar 

  27. M. Monajjemi, B. H. Honarparvar, H. Haeri, and M. Heshmat (2006). Russ. J. Phys. Chem. C 80(1), S40.

    Article  CAS  Google Scholar 

  28. A. Tsolakidis and E. Kaxiras (2005). J. Phys. Chem. A 109(10), 2373.

    Article  CAS  Google Scholar 

  29. A. Szarecka, J. Rychlewski, and U. Rychlewska (1998). Comput. Method Sci. Technol. 4, 25.

    Google Scholar 

  30. M. Karelson and A. Lomaka (2001). Arkivoc. III, 51.

    Google Scholar 

  31. G. Lu, P. Maragakis, and E. Kaxiras (2005). Nano. Lett. 5(5), 897.

    Article  CAS  Google Scholar 

  32. X. Li, Y. Peng, and X. Qu (2006). Nucl. Acids Res. 34(13), 3670.

    Article  CAS  Google Scholar 

  33. X. Zhao and J. K. Johnson (2007). J. Am. Chem Soc. 129(34), 10438.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Majid Monajjemi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Monajjemi, M., Mollaamin, F. Molecular Modeling Study of Drug-DNA Combined to Single Walled Carbon Nanotube. J Clust Sci 23, 259–272 (2012). https://doi.org/10.1007/s10876-011-0426-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-011-0426-y

Keywords

Navigation