Skip to main content
Log in

Effects of Competitive Active-Site Ligand Binding on Proton- and Electron-Transfer Properties of the [Co4(H2O)2(PW9O34)2]10− Polyoxometalate Water Oxidation Catalyst

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

The polyoxometalate [Co4(L)2(PW9O34)2]10−, where L is typically H2O, (1) is a much-studied homogeneous water oxidation catalyst that facilitates the conversion of water to dioxygen through a mechanism that remains poorly understood due to difficulty measuring electrochemical and acid–base properties in aqueous media. Studies in a non-aqueous, polar aprotic solvent such as acetonitrile, MeCN, are useful for probing the properties of this catalyst in the absence of reactive substrates or in the presence of competitive substrates. We report that in MeCN, 1 can be electrochemically and chemically oxidized to an unstable species, 1 ox , which reverts to 1 over time. Dioxygen formation is not observed in MeCN under catalytic conditions. In water, the presence of MeCN does not significantly affect kinetics of oxidation but significantly inhibits the yield of dioxygen. X-ray crystal structure determination shows that MeCN coordinates to the two external Co centers in the solid state; changes in the visible spectrum indicate that aqua and MeCN ligands on these Co centers exchange in the solution state. In agreement with these observations, acid–base titration behavior is shifted to reflect competitive binding and density-functional theory calculations show a 2.1 kcal mol−1 stronger interaction for MeCN than H2O. This competitive binding and the effects on water oxidation support the direct involvement of these two Co centers in binding substrate water and/or trapping of reactive intermediates by MeCN.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Y. V. Geletii, B. Botar, P. Kögerler, D. A. Hillesheim, D. G. Musaev, and C. L. Hill (2008). Angew. Chem. Int. Ed. 47, 3896. doi:10.1002/anie.200705652.

    Article  CAS  Google Scholar 

  2. A. Sartorel, M. Carraro, G. Scorrano, R. D. Zorzi, S. Geremia, N. D. McDaniel, S. Bernhard, and M. Bonchio (2008). J. Am. Chem. Soc. 130, (15), 5006.

    Article  CAS  Google Scholar 

  3. Y. V. Geletii, Z. Huang, Y. Hou, D. G. Musaev, T. Lian, and C. L. Hill (2009). J. Am. Chem. Soc. 131, 7522. doi:10.1021/ja901373m.

    Article  CAS  Google Scholar 

  4. Y. V. Geletii, C. Besson, Y. Hou, Q. Yin, D. G. Musaev, D. Quinonero, R. Cao, K. I. Hardcastle, A. Proust, P. Kögerler, and C. L. Hill (2009). J. Am. Chem. Soc. 131, (47), 17360.

    Article  CAS  Google Scholar 

  5. A. Sartorel, P. Miro, E. Salvadori, S. Romain, M. Carraro, G. Scorrano, M. D. Valentin, A. Llobet, C. Bo, and M. Bonchio (2009). J. Am. Chem. Soc. 131, 16051.

    Article  CAS  Google Scholar 

  6. C. Besson, Z. Huang, Y. V. Geletii, S. Lense, K. I. Hardcastle, D. G. Musaev, T. Lian, A. Proust, and C. L. Hill (2010). Chem. Commun. 46, 2784.

    Article  CAS  Google Scholar 

  7. M. Murakami, D. Hong, T. Suenobu, S. Yamaguchi, T. Ogura, and S. Fukuzumi (2011). J. Am. Chem. Soc. 133, 11605. doi:10.1021/ja2024965.

    Article  CAS  Google Scholar 

  8. H. Lv, Y. V. Geletii, C. Zhao, J. W. Vickers, G. Zhu, Z. Luo, J. Song, T. Lian, D. G. Musaev, and C. L. Hill (2012). Chem. Soc. Rev. 41, 7572. doi:10.1039/c2cs35292c.

    Article  CAS  Google Scholar 

  9. S. Tanaka, M. Annaka, and K. Sakai (2012). Chem. Commun. 48, 1653. doi:10.1039/C2CC16821A.

    Article  CAS  Google Scholar 

  10. F. Song, Y. Ding, B. Ma, C. Wang, Q. Wang, X. Du, S. Fu, and J. Song (2013). Energy Environ. Sci. 6, (4), 1170. doi:10.1039/c3ee24433d.

    Article  CAS  Google Scholar 

  11. F. Evangelisti, P.-E. Car, O. Blacque, and G. R. Patzke (2013). Catal. Sci. Technol. 3, (12), 3117. doi:10.1039/c3cy00475a.

    Article  CAS  Google Scholar 

  12. J. Wei, Y. Feng, P. Zhou, Xu J YanLiu, R. Xiang, Y. Ding, C. Zhao, L. Fan, and C. Hu (2015). ChemSusChem 8, (16), 2630. doi:10.1002/cssc.201500490.

    Article  CAS  Google Scholar 

  13. X.-B. Han, Y.-G. Li, Z.-M. Zhang, H.-Q. Tan, Y. Lu, and E.-B. Wang (2015). J. Am. Chem. Soc. 137, 5486. doi:10.1021/jacs.5b01329.

    Article  CAS  Google Scholar 

  14. S. M. Lauinger, J. M. Sumliner, Q. Yin, Z. Xu, G. Liang, E. N. Glass, T. Lian, and C. L. Hill (2015). Chem. Mater. 27, (17), 5886. doi:10.1021/acs.chemmater.5b01248.

    Article  CAS  Google Scholar 

  15. S. Goberna-Ferrón, J. Soriano-López, J. R. Galán-Mascarós, and M. Nyman (2015). Eur. J. Inorg. Chem. 2015, 2833. doi:10.1002/ejic.201500404.

    Article  Google Scholar 

  16. S. Goberna-Ferrón, J. Soriano-López, and J. R. Galán-Mascarós (2015). Inorganics 3, 332.

    Article  Google Scholar 

  17. X. Du, Y. Ding, F. Song, B. Ma, J. Zhao, and J. Song (2015). Chem. Commun. 51, 13915. doi:10.1039/c5cc04551g.

    Google Scholar 

  18. Xing X, Wang M, Liu R, Zhang S, Zhangc K, Li B, Zhang G (2016) Highly efficient electrochemically driven water oxidation by graphene-supported mixed-valent Mn16-containing polyoxometalate. Green Energy & Environ:Available online 19 April 2016. doi:10.1016/j.gee.2016.04.001

  19. Y. Surendranath, M. Dincă, and D. G. Nocera (2009). J. Am. Chem. Soc. 131, 2615.

    Article  CAS  Google Scholar 

  20. M. W. Kanan, Y. Surendranath, and D. G. Nocera (2009). Chem. Soc. Rev. 38, 109.

    Article  CAS  Google Scholar 

  21. Y. Surendranath, M. W. Kanan, and D. G. Nocera (2010). J. Am. Chem. Soc. 132, 16501.

    Article  CAS  Google Scholar 

  22. Y. Surendranath, D. A. Lutterman, Y. Liu, and D. G. Nocera (2012). J. Am. Chem. Soc. 134, (14), 6326. doi:10.1021/ja3000084.

    Article  CAS  Google Scholar 

  23. Q. Yin, J. M. Tan, C. Besson, Y. V. Geletii, D. G. Musaev, A. E. Kuznetsov, Z. Luo, K. I. Hardcastle, and C. L. Hill (2010). Science 328, 342. doi:10.1126/science.1185372.

    Article  CAS  Google Scholar 

  24. X.-B. Han, Z.-M. Zhang, T. Zhang, Y.-G. Li, W. Lin, W. You, Z.-M. Su, and E.-B. Wang (2014). J. Am. Chem. Soc. 136, 5359. doi:10.1021/ja412886e.

    Article  CAS  Google Scholar 

  25. Z. Huang, Z. Luo, Y. V. Geletii, J. Vickers, Q. Yin, D. Wu, Y. Hou, Y. Ding, J. Song, D. G. Musaev, C. L. Hill, and T. Lian (2011). J. Am. Chem. Soc. 133, 2068. doi:10.1021/ja109681d.

    Article  CAS  Google Scholar 

  26. J. W. Vickers, H. Lv, J. M. Sumliner, G. Zhu, Z. Luo, D. G. Musaev, Y. V. Geletii, and C. L. Hill (2013). J. Am. Chem. Soc. 135, (38), 14110. doi:10.1021/ja4024868.

    Article  CAS  Google Scholar 

  27. R. Schiwon, K. Klingan, H. Dau, and C. Limberg (2014). Chem. Commun. 50, 100. doi:10.1039/c3cc46629a.

    Article  CAS  Google Scholar 

  28. S. Balula Maria, A. Gamelas José, M. Carapuça Helena, and M. V. Cavaleiro Ana (2004). Eur. J. Inorg. Chem. 3, 619. doi:10.1002/ejic.200300292.

    Article  Google Scholar 

  29. Z. Zhang, J. Liu, E. Wang, C. Qin, Y. Li, Y. Qi, and X. Wang (2008). Dalton Trans. 4, 463. doi:10.1039/B712903C.

    Article  Google Scholar 

  30. L. Fan, E. Wang, Y. Li, H. An, D. Xiao, and X. Wang (2007). J. Mol. Struct. 841, (1–3), 28. doi:10.1016/j.molstruc.2006.11.059.

    Article  CAS  Google Scholar 

  31. B. Li, D. Zhao, S.-T. Zheng, and G.-Y. Yang (2008). J. Cluster Sci. 19, (4), 641. doi:10.1007/s10876-008-0218-1.

    Article  CAS  Google Scholar 

  32. A. Dolbecq, J.-D. Compain, P. Mialane, J. Marrot, E. Rivière, and F. Sécheresse (2008). Inorg. Chem. 47, (8), 3371. doi:10.1021/ic7024186.

    Article  CAS  Google Scholar 

  33. Y. C. Wang, L. Xu, N. Jiang, X. Z. Liu, F. Y. Li, and Y. G. Li (2010). Inorg. Chem. Commun. 13, (8), 964. doi:10.1016/j.inoche.2010.05.008.

    Article  CAS  Google Scholar 

  34. D. E. Katsoulis and M. T. Pope (1984). J. Am. Chem. Soc. 106, (9), 2737.

    Article  CAS  Google Scholar 

  35. R. G. Finke, M. W. Droege, and P. J. Domaille (1987). Inorg. Chem. 26, (23), 3886.

    Article  CAS  Google Scholar 

  36. O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, and H. Puschmann (2009). J. Appl. Crystallogr. 42, 339. doi:10.1107/S0021889808042726.

    Article  CAS  Google Scholar 

  37. G. Sheldrick (2015). Acta Crystallogra. Sect. A 71, (1), 3. doi:10.1107/S2053273314026370.

    Article  Google Scholar 

  38. G. Sheldrick (2008). A short history of SHELX. Acta Cryst. A 64, 112. doi:10.1107/S0108767307043930.

    Article  CAS  Google Scholar 

  39. Y. Zhao and D. G. Truhlar (2006). J. Chem. Phys. 125, (19), 194101.

    Article  Google Scholar 

  40. W. R. Wadt and P. J. Hay (1985). J. Chem. Phys. 82, 284.

    Article  CAS  Google Scholar 

  41. P. J. Hay and W. R. Wadt (1985). J. Chem. Phys. 82, 299.

    Article  CAS  Google Scholar 

  42. P. J. Hay and W. R. Wadt (1985). J. Chem. Phys. 82, 270.

    Article  CAS  Google Scholar 

  43. E. Cances, B. Mennucci, and J. Tomasi (1997). J. Chem. Phys. 107, (8), 3032.

    Article  CAS  Google Scholar 

  44. B. Mennucci and J. Tomasi (1997). J. Chem. Phys. 106, (12), 5151. doi:10.1063/1.473558.

    Article  CAS  Google Scholar 

  45. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, J. A. Montgomery J, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, N. Rega JMM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, K. Morokuma VGZ, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Ö. Farkas JBF, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09. Revision A.1 edn., Gaussian inc.,Wallingford

  46. J. J. Stracke and R. G. Finke (2011). J. Am. Chem. Soc. 133, 14872. doi:10.1021/ja205569j.

    Article  CAS  Google Scholar 

  47. J. J. Stracke and R. G. Finke (2013). ACS Catal. 3, (6), 1209. doi:10.1021/cs400141t.

    Article  CAS  Google Scholar 

  48. J. J. Stracke and R. G. Finke (2014). ACS Catal. 4, 79. doi:10.1021/cs4006925.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Our work was funded by the U.S. Department of Energy, Office of Basic Energy Sciences, Solar Photochemistry Program (DE-FG02-07ER-15906).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marika Wieliczko.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 356 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wieliczko, M., Geletii, Y.V., Bacsa, J. et al. Effects of Competitive Active-Site Ligand Binding on Proton- and Electron-Transfer Properties of the [Co4(H2O)2(PW9O34)2]10− Polyoxometalate Water Oxidation Catalyst. J Clust Sci 28, 839–852 (2017). https://doi.org/10.1007/s10876-016-1135-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-016-1135-3

Keywords

Navigation