Skip to main content
Log in

Morpho/Opto-structural Characterizations and XRD-Assisted Estimation of Crystallite Size and Strain in MgO Nanoparticles by Applying Williamson–Hall and Size–Strain Techniques

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

Magnesium oxide (MgO) nanoparticles were fabricated at the ambient temperature by a chemical precipitation method. The as-synthesized nanoparticles were analyzed by using X-ray diffraction (XRD), transmission electron microscopy (TEM), field emission scanning electron microscopy (FESEM) equipped with energy dispersive X-ray spectrometer (EDS), particle size analyzer (PSA), Fourier transform infrared spectroscopy (FTIR), and UV–Vis absorption spectroscopy. The strain and crystallite size of the prepared nanopowders were studied by means of X-ray profile calculations. The size–strain plot (SSP) and Williamson–Hall (W–H) techniques were applied to investigate the effect of crystallite size and obtained strain in the lattice based on the peak broadening of MgO nanopowders. Various models such as size–strain plot (SSP), uniform deformation stress model (UDSM), uniform deformation model (UDM), and uniform deformation energy density model (UDEDM) method were applied to estimate certain physical parameters including strain, energy density, and stress values. Besides, the measured crystallite size by the above-mentioned models, FESEM, and TEM images and Scherrer's equation were compared to each other. The optical band gap energy of the nanoparticles estimated from the UV–Vis absorption spectrum was found to be equal to 4.6 and 4.9 eV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. M. S. Chavali and M. P. Nikolova (2019). SN Appl. Sci. 1, 607.

    Article  CAS  Google Scholar 

  2. Y. Cai, C. Li, D. Wu, W. Wang, F. Tan, X. Wang, P. K. Wong, and X. Qiao (2017). Chem. Eng. J. 312, 158.

    Article  CAS  Google Scholar 

  3. R. Mbarki, I. Madhi, and A. M’nif, and A. H. Hamzaoui, (2015). Mater. Sci. Semicond. Process. 39, 119.

    Article  CAS  Google Scholar 

  4. N. A. Aal, A. A. Al-Ghamdi, F. El-Tantawy, F. Yakuphanoglu, and W. A. Farooq (2014). J. Sol–Gel Sci. Technol. 70, 14.

    Article  CAS  Google Scholar 

  5. S. Demirci, B. Ozttirk, S. Yildirim, F. Bakal, M. Erol, O. Sancakojlu, R. Yigit, E. Celik, and T. Batar (2015). Mater. Sci. Semicond. Process. 34, 154.

    Article  CAS  Google Scholar 

  6. M. R. Bindliu, M. Umadevi, M. Ravin Micheal, M. V. Arasu, and N. Abdullah Al-Dhabi (2016). Mater Lett. 166, 19.

    Article  CAS  Google Scholar 

  7. A. Bagheri Gh, M. Sabbaghan, and Z. Mirgani (2015). Spectrochim. Acta A 137, 1286.

    Article  CAS  Google Scholar 

  8. A. Das, A. C. Mandal, S. Roy, P. Prashanth, S. I. Aliamed, S. Kar, M. S. Prasad, and P. M. G. Nambissan (2016). Physica E 83, 389.

    Article  CAS  Google Scholar 

  9. M. S. Hamdy, N. S. Awwad, and A. M. Alsliahrani (2016). Mater. Des. 110, 503.

    Article  CAS  Google Scholar 

  10. V. Stengl, S. Bakardjieva, M. Marikova, P. Bezdicka, and J. Subrt (2003). Mater. Lett. 57, 3989.

    Article  CAS  Google Scholar 

  11. W. Peng, J. Li, B. Chen, N. Wang, G. Luo, and F. Wei (2016). Catal. Commun. 74, 39.

    Article  CAS  Google Scholar 

  12. N. K. Nga, P. T. T. Hong, T. D. Lam, and T. Q. Huy (2013). J. Colloid Interface Sci. 398, 210.

    Article  CAS  PubMed  Google Scholar 

  13. N. M. A. Hadia and H. A. H. Mohamed (2015). Mater. Sci. Semicond. Process. 29, 238.

    Article  CAS  Google Scholar 

  14. S. Balamuragan, L. Aslma, and P. Paithiban (2014). J. Nanotechnol. 2014, 1.

    Article  CAS  Google Scholar 

  15. N. C. S. Selvam, R. T. Kumar, L. J. Kennedy, and J. J. Vijaya (2011). J. Alloys Compd. 509, 9809.

    Article  CAS  Google Scholar 

  16. A. Ganguly, P. Trinh, K. V. Ramanujachary, T. Ahmad, A. Mugweru, and A. K. Ganguli (2011). J. Colloid Interface Sci. 353, 137.

    Article  CAS  PubMed  Google Scholar 

  17. K. Zak, W. H. Abd Majid, M. E. Abrishami, and R. Yousefi (2011). Solid State Sci. 13, 251.

    Article  CAS  Google Scholar 

  18. R. Sivakami, S. Dhanuskodi, and R. Karvembu (2016). Spectrochim. Acta A 152, 43.

    Article  CAS  Google Scholar 

  19. R. Yogamalar, R. Srinivasan, A. Vinu, K. Ariga, and A. C. Bose (2009). Solid State Commun. 149, 1919.

    Article  CAS  Google Scholar 

  20. R. Rai, T. Triloki, and B. K. Singh (2016). Appl. Phys. A 122, 1.

    Article  CAS  Google Scholar 

  21. K. A. Aly, N. M. Khalil, Y. Algamal, and Q. M. A. Saleem (2016). J. Alloys Compd. 676, 606.

    Article  CAS  Google Scholar 

  22. A. Kalita and M. P. C. Kalita (2017). Physica E 92, 36.

    Article  CAS  Google Scholar 

  23. K. A. Aly, N. M. Khalil, Y. Algamal, and Q. M. A. Saleem (2017). Mater. Chem. Phys. 193, 182.

    Article  CAS  Google Scholar 

  24. N. Rani, S. Chahal, A. S. Chauhan, P. Kumar, R. Shukla, and S. K. Singh (2019). Mater. Today Proc. 12, 543.

    Article  CAS  Google Scholar 

  25. S. Yousefi, B. Ghasemi, M. Tajally, and A. Asghari (2017). J. Alloys Compd. 711, 521.

    Article  CAS  Google Scholar 

  26. S. Yousefi, B. Ghasemi, M. Tajalli, and A. Asghari (2018). J. Adv. Mater. Eng. 36, 59.

    Google Scholar 

  27. S. Yousefi and B. Ghasemi (2019). Micro–Nano Lett. 9, 1019.

    Article  CAS  Google Scholar 

  28. S. Yousefi, B. Ghasemi, and M. P. Nikolova (2021). Appl. Phys. A 127, 549.

    Article  CAS  Google Scholar 

  29. S. Yousefi and B. Ghasemi (2021). Res. Chem. Intermed. 47, 2029.

    Article  CAS  Google Scholar 

  30. S. Yousefi, B. Ghasemi, and M. Tajally (2020). Appl. Phys. A 126, 1.

    Article  CAS  Google Scholar 

  31. D. Cullity and S. R. Stock, Elements of X-Ray Diffraction, 3rd ed. (Prentice Hall, Hoboken, 2014), pp. 615–617.

    Google Scholar 

  32. N. Rani, S. Chahal, P. Kumar, R. Shukla, and S. K. Singh (2020). J. Supercond. Nov. Magn. 33, 1473.

    Article  CAS  Google Scholar 

  33. N. Rani, S. Chahal, P. Kumar, A. Kumar, R. Shukla, and S. K. Singh (2020). Vacuum 179, 109539.

    Article  CAS  Google Scholar 

  34. P. Bindu and S. Thomas (2014). J. Theor. Appl. Phys. 8, 123.

    Article  Google Scholar 

  35. B. Rajesh Kumar and B. Hymavathi (2017). J. Asian Ceram. Soc. 5, 94.

    Article  Google Scholar 

  36. K. Venkateswarlu, A. Chandra Bose, and N. Rameshbabu (2010). Physica B 405, 4256.

    Article  CAS  Google Scholar 

  37. W. Martienssen and H. Warlimont, Springer Handbook of Condensed Matter and Materials Data. (Springer, Berlin, 2005), pp. 829–830.

    Book  Google Scholar 

  38. S. G. Pandya, J. P. Corbett, W. M. Jadwisienczak, and M. E. Kordesch (2016). Physica E 79, 98.

    Article  CAS  Google Scholar 

  39. G. S. Thool, A. K. Singh, R. S. Singh, A. Gupta, and M. A. B. H. Susan (2014). J. Saudi Chem. Soc. 18, 712.

    Article  CAS  Google Scholar 

  40. V. Biju, N. Sugathan, V. Vrinda, and S. L. Salini (2008). J. Mater. Sci. 43, 1175.

    Article  CAS  Google Scholar 

  41. K. Magesliwaii, S. S. Mali, R. Satliyamooilhy, and P. S. Patil (2013). Powder Technol. 249, 456.

    Article  CAS  Google Scholar 

  42. S. Yousefi and B. Ghasemi (2020). SN Appl. Sci. 2, 852.

    Article  CAS  Google Scholar 

  43. M. A. Dar and D. Varslmey (2018). RSC Adv. 8, 14120.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. R. Al-Gaashani, S. Radiman, A. R. Daud, N. Tabet, and Y. Al-Douri (2013). Ceram. Int. 39, 2283.

    Article  CAS  Google Scholar 

  45. R. Al-Gaashani, S. Radiman, Y. Al-Douri, N. Tabet, and A. R. Daud (2012). J. Alloys Compd. 521, 71.

    Article  CAS  Google Scholar 

  46. M. M. Obeid, S. J. Edrees, and M. M. Shukur (2018). Superlattices Microstruct. 122, 124.

    Article  CAS  Google Scholar 

  47. T. Selvamani, T. Yagyu, S. Kawasaki, and I. Mukliopadhyay (2010). Catal. Commun. 11, 537.

    Article  CAS  Google Scholar 

  48. M. P. Dharshini, G. Jayam Sr, V. Shally, and D. Manoharan (2012). Appl. Res. Dev. Inst. J. 6, 150.

    Google Scholar 

  49. M. C. C. Wobbe, A. Kerridge, and M. A. Zwijnenburg (2014). Phys. Chem. Chem. Phys. 16, 22052.

    Article  CAS  PubMed  Google Scholar 

  50. L. Kumaii, W. Z. Li, C. H. Vannoy, R. M. Leblanc, and D. Z. Wang (2009). Ceram. Int. 35, 3355.

    Article  CAS  Google Scholar 

  51. Y. Zhao and G. Zhu (2007). Mater. Sci. Eng. R 142, 93.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The lovely help of Mrs. M. Alipour and Mr. Abbas Alipour (Khosur-Barreh) are gratefully acknowledged. This is dedicated to our little scientist “Parnia Yousefi”.

Funding

There are no sources of financial funding and support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sadegh Yousefi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Research Involving Human Participants and Animals

The research did not involve human participants and/or animals.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yousefi, S., Ghasemi, B. & Nikolova, M.P. Morpho/Opto-structural Characterizations and XRD-Assisted Estimation of Crystallite Size and Strain in MgO Nanoparticles by Applying Williamson–Hall and Size–Strain Techniques. J Clust Sci 33, 2197–2207 (2022). https://doi.org/10.1007/s10876-021-02144-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-021-02144-y

Keywords

Navigation