Skip to main content
Log in

Jacobi Fields in Optimal Control: One-dimensional Variations

  • Published:
Journal of Dynamical and Control Systems Aims and scope Submit manuscript

Abstract

In this paper which is closely related to the previous paper [3] we specify general theory developed there. We study the structure of Jacobi fields in the case of an analytic system and piecewise analytic control. Moreover, we consider only 1-dimensional control variations. Jacobi fields are piecewise analytic in this case but may have jump discontinuities. We derive ODEs that these fields satisfy on the intervals of regularity and study behavior of the fields in a neighbourhood of a singularity where the ODE becomes singular and the Jacobi fields may have jumps.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Agrachev A. 1998. Feedback?invariant optimal control theory and differential geometry, II. Jacobi curves for singular extremals. J. Dynamical and Control Systems, pp 583?604,.

  2. Agrachev A. 2004. Nonlinear and optimal control theory, chapter Geometry of optimal control problems and Hamiltonian systems, pp 1–59, Springer.

  3. Agrachev A, Beschastnyi I. Jacobi fields in optimal control: Morse and Maslov indices. preprint.

  4. Agrachev A, Beschastnyi I. Symplectic geometry of constrained optimization. Regular and Chaotic Dynamics 2017;22:750–770.

    Article  MathSciNet  Google Scholar 

  5. Agrachev A, Gamkrelidze R. 1990. Nonlinear controllability and optimal control, chapter Symplectic geometry for optimal control, pp 263–277, CRC Press Book.

  6. Agrachev A, Gamkrelidze R. 1997. Feedback–?invariant optimal control theory and differential geometry, I. Regular extremals. J. Dynamical and Control Systems, pp 343?-389.

  7. Agrachev A, Gamkrelidze R. 1998. Geometry of feedback and optimal control, chapter Symplectic methods in optimization and control, pp 19–77, CRC Press Book.

  8. Agrachev A, Rizzi L, Silveira P. On conjugate times of LQ optimal control problems. J Dynamical and Control Systems 2015;21:625–641.

    Article  MathSciNet  Google Scholar 

  9. Agrachev A, Sachkov Y. 2004. Control theory from a geometric point of view. Springer.

  10. Agrachev A, Steffani G, Zezza P. Strong optimality of a bang-bang trajectory. SIAM J on Control and Optimization 2002;41:981–1014.

    Article  MathSciNet  Google Scholar 

  11. Arnold V. The Sturm theorems and symplectic geometry. Funct Anal Appl 1985; 19:251–259.

    Article  MathSciNet  Google Scholar 

  12. Bonnard B, Chyba M. 2003. Singular trajectories and their role in control theory. Springer.

  13. Caillau J-B, Fejoz J, Orieux M, Roussarie R. Singularities of min time affine control systems. preprint, hal-01718345, version 1.

  14. Cappell S, Lee R, Miller E. On the Maslov index. Comm Pure Appl Math 1994;47:121–186.

    Article  MathSciNet  Google Scholar 

  15. Coddington E, Levinson N. 1984. Theory of ordinary differential equations. Krieger pub co.

  16. de Gosson M. 2000. Symplectic geometry and quantum mechanics. Birkhauser.

  17. Guillemin V, Sternberg S. 1977. Geometric asymptotics. American Mathematical Society.

  18. Horn R, Johnson C. 2012. Matrix analysis. Cambridge University Press, 2 edn.

  19. Morse M. Singular quadratic functionals. Math Ann 1973;201:60–76.

    Article  MathSciNet  Google Scholar 

  20. Morse M, Leighton W. Singular quadratic functionals. Trans Amer Math Soc 1936;36:252–286.

    Article  MathSciNet  Google Scholar 

  21. Olver F, Maximon L. 2010. NIST handbook Of mathematical functions, chapter Bessel functions, pp 215–286, Cambridge University Press.

  22. Osmolovskii N, Maurer H. 2016. Advances in mathematical modeling optimization and optimal control, chapter Second-order optimality conditions for broken extremals and bang-bang controls, pp 147–201, Springer.

  23. Reid W. 1972. Riccati differential equations. Academic Press.

  24. Shättler H, Ledzewicz U. 2012. Geometric optimal control. Springer.

  25. Shayman M. Phase portrait of the matrix Riccati equation. SIAM J Control and Optimization 1986;24(1):1–65.

    Article  MathSciNet  Google Scholar 

  26. Sussmann H, Liu W. 1995. Shortest paths for sub-Riemannian metrics on rank-two distributions.

  27. Sussmann HJ. 1986. Algebraic and geometric methods in nonlinear control theory, chapter Envelopes, conjugate points, and optimal bang-bang extremals, pp 325–346. D Reidel Publishing company.

  28. Teschl G. 2012. Ordinary differential equations and dynamical systems. American Mathematical Society.

  29. Wagner V. The geometrical theory of the simplest n-dimensional singular problem of the calculus of variations. Rec Math [Mat Sbornik] N S 1947;63:321–364.

    MathSciNet  Google Scholar 

Download references

Acknowledgments

We would like to thank Luca Rizzi for pointing out an error in the initial formulation of the oscillation theorem and Jean-Baptiste Caillau, Francesco Rossi and the anonymous referee for helpful discussions and remarks that helped to improve the article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivan Beschastnyi.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Agrachev, A., Beschastnyi, I. Jacobi Fields in Optimal Control: One-dimensional Variations. J Dyn Control Syst 26, 685–732 (2020). https://doi.org/10.1007/s10883-019-09467-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10883-019-09467-0

Keywords

Navigation