Skip to main content

Advertisement

Log in

Defensive Spiroketals from Asceles glaber (Phasmatodea): Absolute Configuration and Effects on Ants and Mosquitoes

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

Insects are the largest and most diverse group of organisms on earth, with over 1,000,000 species identified to date. Stick insects (“walkingsticks” or “phasmids”, Order Phasmatodea) are known for and name-derived from their camouflage that acts as a primary line of defense from predation. However, many species also possess a potent chemical defense spray. Recently we discovered that the spray of Asceles glaber contains spiroketals [a confirmed major component: (2S,6R)-(−)(E)-2-methyl-1,7-dioxaspiro[5.5]undecane, and a tentatively identified minor component: 2-ethyl-1,6-dioxaspiro[4.5]decane] and glucose. In this paper, we: 1) illustrate the identification of spiroketals and glucose in the defense spray of A. glaber by using Nuclear Magnetic Resonance (NMR), Gas Chromatography/Mass Spectrometry (GC/MS), and comparison with a synthetic reference sample; 2) provide the elucidation of the absolute configuration of the major spiroketal in that defense spray; and 3) demonstrate the effect of this compound and its enantiomer on both fire ants (Solenopsis invicta) and mosquitoes (Aedes aegypti).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Barnard, D. R., Bernier, U. R., Xue, R.-D., and Debboun, M. 2007. Chapter 5: Standard methods for testing mosquito repellents, pp. 101–108, in M. Debboun, S. P. Frances, and D. Strickman (eds.), Insect repellents: Principles, methods and uses. CRC Press, Boca Raton.

    Google Scholar 

  • Bedford, G. O. 1978. Biology and ecology of the phasmatodea. Annu. Rev. Entomol. 23:125–149.

    Article  Google Scholar 

  • Bernier, U. R., Kline, D. L., Allan, S. A., and Barnard, D. R. 2007a. Laboratory comparison of Aedes Aegypti attraction to human odors and to synthetic human odor compounds and blends. J. Am. Mosq. Contr. Assoc. 23:288–293.

    Article  Google Scholar 

  • Bernier, U. R., Kline, D. L., and Posey, K. H. 2007b. Natural compounds that inhibit mosquito host-finding abilities, pp. 77–100, in M. Debboun, S. P. Frances, and D. Strickman (eds.), Insect Repellents: Principles, methods, and uses. CRC Press, Boca Raton.

    Google Scholar 

  • Blum, M. S. 1981. pp. 562, Chemical defenses of arthropods. Academic, New York.

    Google Scholar 

  • Blum, M. S. 1996. Semiochemical parsimony in the Arthropoda. Annu. Rev. of Entomol. 41:353–374.

    Article  CAS  Google Scholar 

  • Booth, Y. K., Kitching, W., and De Voss, J. J. 2009. Biosynthesis of insect spiroacetals. Nat. Prod. Rep. 26:490–525.

    Article  PubMed  CAS  Google Scholar 

  • Bouchard, P., Hsiung, C. C., and Yaylayan, V. A. 1997. Chemical analysis of defense secretions of Sipyloidea sipylus and their potential use as repellents against rats. J. Chem. Ecol. 23:2049–2057.

    Article  CAS  Google Scholar 

  • Bradler, S. 2009. Die Phylogenie der Stab- und Gespentschrecken (Insecta: Phasmatodea). Species Phylog. Evol. 2:3–139.

    Google Scholar 

  • Bragg, P. E. 2001. pp. 772, Phasmids of Borneo. Natural History Publications (Borneo), Kota Kinabalu.

    Google Scholar 

  • Brock, P. D. 1999. pp. 165, The amazing world of stick and leaf-insects. Amateur Entomologists Society, Feltham.

    Google Scholar 

  • Brock, P. D. 2009. Phasmida species file online. he Orthopterists’ Society, London. http://Phasmida.SpeciesFile.org.

    Google Scholar 

  • Brutlag, A. G., Hovda, L. R., and Della Ripa, M. A. 2011. Corneal ulceration in a dog following exposure to the defensive spray of a walkingstick insect (Anisomorpha spp.). J. Vet. Emerg. Crit. Care 21:382–386.

    Article  Google Scholar 

  • Carlberg, U. 1985a. Chemical defense in Anisomorpha buprestoides (Houttuyn in Stoll) (Insecta, Phasmida). Zool. Anz. 215:177–188.

    Google Scholar 

  • Carlberg, U. 1985b. Chemical defense in Extatosoma tiaratum (Macleay) (Insecta, Phasmida). Zool. Anz. 214:185–192.

    Google Scholar 

  • Carlberg, U. 1986. Chemical defense in Sipyloidea sipylus (Westwood) (Insecta, Phasmida). Zool. Anz. 217:31–38.

    Google Scholar 

  • Chow, Y. S. and Lin, Y. M. 1986. Actinidine, a defensive secretion of stick insect, Megacrania alpheus Westwood (Orthoptera, Phasmatidae). J. Entomol. Sci. 21:97–101.

    CAS  Google Scholar 

  • Dettner, K., Fettkother, R., Ansteeg, O., Deml, R., Liepert, C., Petersen, B., Haslinger, E., and Francke, W. 1992. Insecticidal fumigants from defensive glands of insects - a fumigant test with adults of Drosophila melanogaster. J. Appl. Ent.-Z. Angewandte Entomologie 113:128–137.

    Google Scholar 

  • Dossey, A. T. 2010. Insects and their chemical weaponry: new potential for drug discovery. Nat. Prod. Rep. 27:1737–1757.

    Article  PubMed  CAS  Google Scholar 

  • Dossey, A. T. 2011. Chemical defenses of insects: A rich resource for chemical biology in the tropics, pp. 27–57, in J. M. Vivanco and T. Weir (eds.), Chemical biology of the tropics: An interdisciplinary approach. Springer, Heidelberg.

    Google Scholar 

  • Dossey, A. T., Walse, S. S., Rocca, J. R., and Edison, A. S. 2006. Single insect NMR: a new tool to probe chemical biodiversity. ACS Chem. Biol. 1:511–514.

    Article  PubMed  CAS  Google Scholar 

  • Dossey, A. T., Walse, S. S., Conle, O. V., and Edison, A. S. 2007. Parectadial, a Monoterpenoid from the Defensive Spray of Parectatosoma mocquerysi. J. Nat. Prod. 70:1335–1338.

    Article  PubMed  CAS  Google Scholar 

  • Dossey, A. T., Walse, S. S., and Edison, A. S. 2008. Developmental and geographical variation in the chemical defense of the walkingstick insect Anisomorpha buprestoides. J. Chem. Ecol. 34:584–590.

    Article  PubMed  CAS  Google Scholar 

  • Dossey, A. T., Gottardo, M., Whitaker, J. M., Roush, W. R., and Edison, A. S. 2009. Alkyldimethylpyrazines in the defensive spray of Phyllium westwoodii: a first for order Phasmatodea. J. Chem. Ecol. 35:861–870.

    Article  PubMed  CAS  Google Scholar 

  • Dziezyc, J. 1992. Insect defensive spray-induced keratitis in a dog. J. Am. Vet. Med. Assoc. 200:1969.

    PubMed  CAS  Google Scholar 

  • Eisner, T. 1965. Defensive spray of a Phasmid insect. Science 148:966.

    Article  PubMed  CAS  Google Scholar 

  • Eisner, T., Morgan, R. C., Attygalle, A. B., Smedley, S. R., Herath, K. B., and Meinwald, J. 1997. Defensive production of quinoline by a phasmid insect (Oreophoetes peruana). J. Exp. Biol. 200:2493–2500.

    PubMed  CAS  Google Scholar 

  • Eisner, T., Eisner, M., and Siegler, M. 2005. pp. 372, Secret weapons: Defenses of insects, spiders, scorpions, and other many-legged creatures. Mass.: Belknap Press of Harvard University Press, Cambridge.

    Google Scholar 

  • Francke, W. and Kitching, W. 2001. Spiroacetals in insects. Curr. Org. Chem. 5:233–251.

    Article  CAS  Google Scholar 

  • Francke, W., Heemann, V., Gerken, B., Renwick, J. A. A., and Vite, J. P. 1977. 2-Ethyl-1,6-Dioxaspiro[4.4]Nonane, Principal Aggregation Pheromone of Pityogenes chalcographus (L). Naturwissenschaften. 64:590–591.

    Article  CAS  Google Scholar 

  • Ghosh, S. K., Ko, C., Liu, J., Wang, J., and Hsung, R. P. 2006. A ketal-tethered RCM strategy toward the synthesis of spiroketal related natural products. Tetrahedron 62:10485–10496.

    Article  CAS  Google Scholar 

  • Goubault, M., Batchelor, T. P., Romani, R., Linforth, R. S. T., Fritzsche, M., Francke, W., and Hardy, I. C. W. 2008. Volatile chemical release by bethylid wasps: identity, phylogeny, anatomy and behaviour. Biol. J. Linn. Soc. 94:837–852.

    Article  Google Scholar 

  • Günther, K. 1938. Neue und wenig bekannte Phasmoiden aus dem Indian museum, Calcutta. Rec. Indian Mus. 40:123–141.

    Google Scholar 

  • Ho, H. Y. and Chow, Y. S. 1993. Chemical-identification of defensive secretion of stick insect, Megacrania tsudai Shiraki. J. Chem. Ecol. 19:39–46.

    Article  CAS  Google Scholar 

  • Katritzky, A. R., Wang, Z. Q., Slavon, S., Dobchev, D. A., Hall, C. D., Tsikolia, M., Bernier, U. R., Elejalde, N. M., Clark, G. G., and Linthicum, K. J. 2010. Novel carboxamides as potential mosquito repellents. J. Med. Ent. 47:924–938.

    Article  CAS  Google Scholar 

  • Kunert, M., Soe, A., Bartram, S., Discher, S., Tolzin-banasch, K., Nie, L., David, A., Pasteels, J., and Boland, W. 2008. De novo biosynthesis versus sequestration: a network of transport systems supports in iridoid producing leaf beetle larvae both modes of defense. Insect Biochem. Molec. Biol. 38:895–904.

    Article  CAS  Google Scholar 

  • Laurent, P., Braekman, J. C., and Daloze, S. 2005. Insect chemical defense, pp. 167–229, in S. Schulz (ed.), Chemistry of pheromones and other Semiochemicals Ii. Springer, Berlin.

    Google Scholar 

  • Meinwald, J., Chadha, M.S., Hurst, J.J., and Eisner, T. 1962. Defense Mechanisms of Arthropods .9. Anisomorphal, the Secretion of a Phasmid Insect. Tet. Lett. 29–33.

  • Moore, C. J., Hubener, A., Tu, Y. Q., Kitching, W., Aldrich, J. R., Waite, G. K., Schulz, S., and Francke, W. 1994. A new spiroketal type from the insect Kingdom. J. Org. Chem. 59:6136–6138.

    Article  CAS  Google Scholar 

  • Neff, S. E. and Eisner, T. 1960. Note on two tachinid parasites of the walking stick, Anisomorpha buprestoides (Stoll). Bull. Brooklyn Ent. Soc. 55:101–103.

    Google Scholar 

  • Paysse, E. A., Holder, S., and Coats, D. K. 2001. Ocular injury from the venom of the Southern walkingstick. Ophthalmology 108:190–191.

    Article  PubMed  CAS  Google Scholar 

  • Posey, K. H. and Schreck, C. E. 1981. An air-flow Apparatus for selecting female mosquitos for use in repellent and attraction studies. Mosquito News 41:566–568.

    Google Scholar 

  • Posey, K. H., Barnard, D. R., and Schreck, C. E. 1998. Triple cage olfactometer for evaluating mosquito (Diptera: Culicidae) attraction responses. J. Med. Ent. 35:330–334.

    CAS  Google Scholar 

  • Prescott, T. A. K., Bramham, J., Zompro, O., and Maciver, S. K. 2009. Actinidine and glucose from the defensive secretion of the stick insect Megacrania nigrosulfurea. Biochem. Syst. Ecol. 37:759–760.

    Article  CAS  Google Scholar 

  • Schmeda-Hirschmann, G. 2006. 4-Methyl-1-hepten-3-one, the defensive compound from Agathemera elegans (Philippi) (Phasmatidae) insecta. Zeitschrift Fur Natur. C - J. Biosci. 61:592–594.

    CAS  Google Scholar 

  • Schneider, C. O. 1934. Las emanaciones del chinchemayo Paradoxomorpha crassa. Rev. Chil. Hist. Nat. 38:44–46.

    Google Scholar 

  • Schwartz, B. D., Moore, C. J., Rahm, F., Hayes, P. Y., Kitching, W., and De Voss, J. J. 2008. Spiroacetal biosynthesis in insects from Diptera to Hymenoptera: the Giant Ichneumon wasp Megarhyssa nortoni nortoni Cresson. J. Am. Chem. Soc. 130:14853–14860.

    Article  PubMed  CAS  Google Scholar 

  • Scudder, S. H. 1876. Odoriferous glands in Phasmidae. Psyche 1:137–140.

    Article  Google Scholar 

  • Sellick, J. 1997. The range of egg capsule morphology within the Phasmatodea and its relevance to the taxonomy of the order. Ital. J. Zool. 64:97–104.

    Article  Google Scholar 

  • Smith, R. M., Brophy, J. J., Cavill, G. W. K., and Davies, N. W. 1979. Iridodials and nepetalactone in the defensive secretion of the coconut stick insects, Graeffea crouani. J. Chem. Ecol. 5:727–735.

    Article  CAS  Google Scholar 

  • Tengö, J., Bergström, G., Borgkarlson, A.-K., Groth, I., and Francke, W. 1982. Volatile compounds from cephalic secretions of females in 2 cleptoparasite bee genera, Epeolus (Hym, Anthophoridae) and Coelioxys (Hym, Megachilidae). Z. Natur. C-a J. of Biosci. 37:376–380.

    Google Scholar 

  • Tilgner, E. H. 2002. Systematics of phasmida. PhD Dissertation. University of Georgia, Athens.

    Google Scholar 

  • Tilgner, E. H. and Mchugh, J. V. 1999. First record of parasitism of Manomera tenuescens (Phasmida: Heteroemiidae) by Phasmophaga antennalis (Diptera: Tachinidae). Entomol. News 110:151–152.

    Google Scholar 

  • Ulrich, E. L., Akutsu, H., Doreleijers, J. F., Harano, Y., Ioannidis, Y. E., Lin, J., Livny, M., Mading, S., Maziuk, D., Miller, Z., Nakatani, E., Schulte, C. F., Tolmie, D. E., Kent Wenger, R., Yao, H., and Markley, J. L. 2008. BioMagResBank. Nuc. Acids Res. 36:D402–D408.

    Article  CAS  Google Scholar 

  • Vander Meer, R. K., Glancey, B. M., Lofgren, C. S., Glover, A., Tumlinson, J. H., and Rocca, J. 1980. The poison sac of red imported fire ant queens - source of a pheromone attractant hymenoptera. Formicidae. Ann. Ent. Soc. Am. 73:609–612.

    Google Scholar 

  • Vander Meer, R. K., Alvarez, F., and Lofgren, C. S. 1988. Isolation of the trail recruitment pheromone of Solenopsis invicta. J. Chem. Ecol. 14:825–838.

    Article  CAS  Google Scholar 

  • Vander Meer, R.K., Banks, W.A., and Lofgren, C.S. December 24, 1996. Repellents for ants. Patent # 5,587,401.

  • Weldon, P. J., Carroll, J. F., Kramer, M., Bedoukian, R. H., Coleman, R. E., and Bernier, U. R. 2011. Anointing chemicals and hematophagous arthropods: responses by ticks and mosquitoes to Citrus (Rutaceae) peel exudates and monoterpene components. J. Chem. Ecol. 37:348–359.

    Article  PubMed  CAS  Google Scholar 

  • Weston, R. J., Woolhouse, A. D., Spurr, E. B., Harris, R. J., and Suckling, D. M. 1997. Spiroacetals and other venom constituents as potential wasp attractants. J. Chem. Ecol. 23:553–568.

    Article  CAS  Google Scholar 

  • Whitaker, J. M. 2012. pp. 41–52, Studies towards the synthesis of Sporolides A and B and other synthetic efforts. PhD Dissertation. Scripps Research Institute, Jupiter.

    Google Scholar 

  • Zhang, H. S., Fletcher, M. T., Dettner, K., Francke, W., and Kitching, W. 1999. Synthesis and absolute stereochemistry of spiroacetals in rove beetles (Coleoptera: Staphylinidae). Tetrahedron. Lett. 40:7851–7854.

    Article  CAS  Google Scholar 

Download references

Acknowledgement

We thank James R. Rocca at the Advanced Magnetic Resonance Imaging and Spectroscopy, University of Florida, for technical assistance on NMR experiments. We also thank David Milne and Michele Hosack for conducting fire ant bioassays. A.T.D. thanks Dr. Spencer S. Walse (USDA-ARS) for lending the enantiomer selective GC column. NMR data were collected in the AMRIS facility in the McKnight Brain Institute of the University of Florida. Funding was provided by the NSF-supported National High Magnetic Field Laboratory (University of Florida) and NIH Grant GM026782 (WRR, Scripps Florida).

Supplemental Material Available online: S1) GC/MS Chromatograms of all natural samples of Asceles glaber defense spray analyzed; S2) Mass spectra of A. glaber defense spray samples and synthetic spiroketal 1; S3) TIC for A. glaber chemical defense spray; S4) The EI mass spectra for A. glaber chemical defense spray; S5) TIC and mass spectrum of synthetic spiroketal 1; S6) The NIST EI Mass Spectral Library search identified the minor peak in A. glaber defense spray; S7) The NIST EI Mass Spectral Library search for the major peak for A. glaber chemical defense spray; S8) 1D 1H NMR spectral overlays of natural A. glaber defense spray and synthetic spiroketal 1 In benzene-d6; S9) NMR spectra of A. glaber defense spray extracted with benzene-d6; S10) NMR spectra of synthetic spiroketal 1; S11) EI mass spectra from enantiomer selective GC/MS analysis of A. glaber chemical defense spray and synthetic spiroketal 1; S12) External calibration curves from the GC/MS of synthetic spiroketal 1 for quantification of that compound in A. glaber chemical defense spray; S13) Extended table of concentrations of spiroketal 1 in A. glaber chemical defense spray; S14) 1D 1H NMR spectral stack plots of natural A. glaber chemical defense spray and authentic D-Glucose dissolved in D2O, S15) NMR spectra of A. glaber defense spray dissolved in D2O; S16) NMR spectra of synthetic spiroketal 1 dissolved in D2O; and S17) NMR spectra of authentic D-Glucose dissolved in D2O.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aaron T. Dossey.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 20333 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dossey, A.T., Whitaker, J.M., Dancel, M.C.A. et al. Defensive Spiroketals from Asceles glaber (Phasmatodea): Absolute Configuration and Effects on Ants and Mosquitoes. J Chem Ecol 38, 1105–1115 (2012). https://doi.org/10.1007/s10886-012-0183-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10886-012-0183-x

Keywords

Navigation