Skip to main content
Log in

Experimental Investigations Into the Speed of Thermoelectric Beverage Coolers With Wet Contact

  • Published:
Journal of Engineering Physics and Thermophysics Aims and scope

The structure of a novel table thermoelectric cooler with wet contact, i.e., with a water-filled gap between the container with a beverage and the cooler chamber, has been presented. The test bed and the procedure of tests and their results have been described. Technical advantages of the novel cooler have been shown, in particular, the increase in its speed, which amounted to 15 to 65%. The effect of acceleration of the cooling of the beverage due to the activation of the second mechanism of heat exchange, i.e., natural convection, has been found and described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Filin, A. Owsicki, and B. Zakrzewski, Badania eksperymentalne chłodziarek termoelektrycznych. Astroprint, Odessa (2010).

    Google Scholar 

  2. S. Filin, B. Zakshevskii, and E. Grushchin'ska, Experimental investigation of the method of layer-by-layer lifting buildup of ice in a bath and in cellular cans, J. Eng. Phys. Thermophys., 74, No. 2, 407–415 (2001).

    Article  Google Scholar 

  3. V. Yu. Zadiraka, S. O. Filin, G. A. Mel'nichuk, and B. M. Rassamakin, Experimental study of a household thermoelectric beverage cooler with immersion-type heat-transfer elements, in: Development of Household Electrical Machines [in Russian], TsNTI “Poisk”, Kiev (1990), pp. 69–78.

  4. S. Filin, Wspyłczesne transportowe chłodziarki do napojуw, Technika Chlodnicza i Klimatyzacyjna, No. 2, 60–62 (2002).

  5. Gholami Pareh Akram, Maktabifard Mojtaba, Ojaghi Seyed Saran Zahra, and Torabi Farschad, Effect of conjugate heat transfer in designing thermoelectric beverage cooler, Energy Equip. Syst., 3, Issue 2, 83–95 (2015); DOI: https://doi.org/10.22059/EES.2015.17028.

  6. A. I. Chernov and Zo Moye, Experimental determination of the operating parameters of a thermoelectric liquid cooler, Zh. Univ. Vodnykh Kommunikatsii, No. 4, 28–34 (2011).

  7. S. Filin, The influence of thermal contact between cooling surface and object on the speed of thermoelectric beverage coolers, J. Thermoelectricity, No. 6, 66–75 (2018).

  8. S. Filin, Poprawa dynamicznych charakterystyk małych termoelektrycznych schładzaczy i podgrzewaczy napojуw. Ciepłownictwo, Ogrzewnictwo, Wentylacja, 49, No. 12, 525–529 (2018); DOI: https://doi.org/10.15199/9.2018.12.9.

  9. S. Filin and L. I. Anatychuk, Termoelektryczne schładzacze napojуw, Zgłoszenie patentowe PL 426737 z dnia 22.08.2018.

  10. N. B. Vargaftik, Handbook of Thermophysical Properties of Gases and Liquids [in Russian], Nauka, Moscow (1972).

    Google Scholar 

  11. J. Jońca, Dwa oblicza wody, Wiedza i życie, No. 6, 58–61 (2019).

  12. J. D. Brownridge, A search for the Mpemba effect: When hot water freezes faster than cold water, Am. J. Phys., 79, Issue 1, 78–93 (2011).

    Article  Google Scholar 

  13. PN-EN ISO 7371:2000. Domowy sprzęt chłodniczy. Chłodziarki z komorą lub bez komory niskich temperatur. Charakterystyki i metody badań.

  14. L. M. Maestro, M. I. Marqués, E. Camarillo, et al., On the existence of two states in liquid water: Impact on biological and nanoscopic systems, Int. J. Nanotechnol., 13, Nos. 8–9 (2016); DOI: https://doi.org/10.1504/IJNT.2016.079670.

  15. G. N. Sidorenko, B. I. Laptev, N. P. Gorlenko, et al., Evaluation of changes in the structural-energy state of water at cooling and heating and the infl uence of a magnetic fi eld, using a thermometer and electrophysical methods, Tomsk State Univ. J. Chem., 7, 80–93 (2017); DOI: https://doi.org/10.17223/24135542/7/8.

  16. A. Kilaj, Gao Hong, D. Rösch, et al., Observation of different reactivities of para- and ortho-water towards trapped diazenylium ions, Nature Commun., 9, Article number 2096 (2018).

  17. I. I. Ignatov and O. V. Mosin, Structural mathematical models describing water clusters, J. Math. Theory Model., 3, No. 11, 72–87 (2013).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. O. Filin.

Additional information

Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 94, No. 1, pp. 127–135, January–February, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Filin, S.O., Zakrzewski, B. Experimental Investigations Into the Speed of Thermoelectric Beverage Coolers With Wet Contact. J Eng Phys Thermophy 94, 118–126 (2021). https://doi.org/10.1007/s10891-021-02278-w

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10891-021-02278-w

Keywords

Navigation