Skip to main content
Log in

Study on the Fluorescence Quenching Reaction of Amitriptyline and Clomipramine Hydrochlorides with Eosin Y and its Analytical Application

  • ORIGINAL PAPER
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Amitriptyline.HCl (AMI) and clomipramine.HCl (CMI) react with eosin Y (EY) in pH 3.8 NaAc-AcH buffer solution to form ion association complex which results in quenching of fluorescence of EY and appearance of a new resonance Rayleigh scattering (RSS) spectrum at 620 nm. The spectral characteristics of absorption, fluorescence and RSS spectra have been investigated. The factors influencing the reaction were studied and optimum conditions for the reaction have been determined. Based on fluorescence quenching, a simple and sensitive spectrofluorimetric method for determination of AMI and CMI has been developed. The fluorescence quenching intensity was measured at 550 nm using an excitation wavelength of 310 nm. The calibration graph was found to be rectilinear in the range 0.08–2.0 μg mL−1 with detection limit of 0.017 μg mL−1 for AMI and 0.06–2.0 μg mL−1 with detection limit of 0.015 μg mL−1 for CMI. The method can be satisfactorily applied to the determination of AMI and CMI in tablets without interference from commonly occurring exicipients. The recovery and RSD values obtained indicate good accuracy and precision of the method. The mechanism of the reaction and fluorescence quenching has also been discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Scheme 1

Similar content being viewed by others

References

  1. Gilman AG (1985) The Phamacological basis of therapeutics, 7th edn. The McMillan Co, New York, p 450

    Google Scholar 

  2. Reynolds JEF (1982) Martindale: The extra pharmacopeia, 26th edn. The Pharmaceutical Press, London, p110

    Google Scholar 

  3. Tatsumi M, Groshan K, Blakely RD, Richelson E (1997) Pharmacological profile of antidepressants and elated compounds at human monoamine transporters. Eur J Pharmacol 340:249–258

    Article  PubMed  CAS  Google Scholar 

  4. Greist JH, Jefferson JW, Kobak KA, Katzeinick DJ, Serlin RC (1995) Efficacy and tolerability of serotonin transport inhibitors in obsessive compulsive disorder: a meta analysis. Arch Gen Psychiatry 52:53–60

    Article  PubMed  CAS  Google Scholar 

  5. Venkatesan P, Subrahmanyam PVRS, Pratap DR (2010) Spectrophotometric determination of pure amitriptyline hydrochloride through ligand exchange on mercuric ion. Int J ChemTech Research 2:54–56

    CAS  Google Scholar 

  6. Nour El-Dien FA, Mohamed GG, Mohamed NA (2006) Spectrophotometric determination of trazodone, amineptine and amitriptyline hydrochlorides through ion-pair formation using methyl orange and bromocresol green reagents. Spectrochim Acta A Mol Biomol Spectrosc 65:20–26

    Article  PubMed  Google Scholar 

  7. Mohamed GG, El-Dien FA, Mohamed NA (2007) Utility of 7,7,8,8-tetracyanoquinodimethane charge transfer reagent for the spectrophotometric determination of trazodone, amineptine and amitriptyline hydrochlorides. Spectrochim Acta A Mol Biomol Spectrosc 68:1244–1249

    Article  PubMed  Google Scholar 

  8. Mohamed GG, El-Dien FA, Mohamed NA (2006) Spectrophotometric determination of trazodone, amineptine, and amitriptyline hydrochlorides through ion pair formation with molybdenum and thiocyanate. Spectrochim Acta A Mol Biomol Spectrosc 65:1221–1226

    Article  PubMed  Google Scholar 

  9. Aman T, Kazi AA, Hussain MI, Firdous S, Khan IU (2000) Spectrophotometric dtermination of Amitriptyline HCl in pure and pharmaceutical preparations. Anal Lett 33:2477–2490

    Article  CAS  Google Scholar 

  10. Dolman SJL, Greenway GM (1996) Determination of amitriptyline using electrogenerated chemiluminescence. Anal Commun 33:139–141

    Article  CAS  Google Scholar 

  11. Rao ML, Staberock U, Baumann P, Hiemke C, Deister A, Cuendet C, Amey M, Hartter S, Kraemer M (1994) Monitoring tricyclic antidepressant concentrations in serum by fluorescence polarization immunoassay compared with gas chromatography and HPLC. Clin Chem 40:929–933

    PubMed  CAS  Google Scholar 

  12. Linden R, Antunes MV, Ziulkoski AL, Wingert M, Tonello P, Tzvetkov M, Souto AA (2008) Determination of amitriptyline and its main metabolites in human plasma samples using HPLC-DAD: application to the determination of metabolic ratios after single oral dose of amitriptyline. J Braz Chem Soc 19:35–41

    Article  CAS  Google Scholar 

  13. Ferguson GK (1998) Quantitative HPLC analysis of a psychotherapeutic medication: simultaneous determination of amitriptyline hydrochloride and perphenazine. J Chem Educ 75:1615–1617

    Article  CAS  Google Scholar 

  14. Martinez Ruiz D, Menendez Gallego M (1988) Determination of amitriptyline and cocaine by GC and GC/MS in biological fluids. Vet Hum Toxicol 30:413–416

    PubMed  CAS  Google Scholar 

  15. Nagaraja P, Silwadi MF, Syed AA (2002) Extractive spectrophotometric determination of certain dibenzazepine antidepressants in pharmaceutical preparations. Acta Pharm 52:289–297

    CAS  Google Scholar 

  16. Hussein SA, Mohamed AMI, Hoda HY (1989) Spectrophotometric determination of some dibenzazepine drugs with picryl chloride. Talanta 36:1147–1149

    Article  PubMed  CAS  Google Scholar 

  17. Nagaraja P, Silwadi MF, Syed AA (2000) Sensitive spectrophotometric determination of some dibenzazepine drugs with daizotized p-phenylenediamine dihydrochloride. Anal Lett 33:2913–2926

    Article  CAS  Google Scholar 

  18. Mohamed FA, Mohamed HA, Hussein SA, Ahmed SA (2005) A validated spectrofluorimetric method for determination of some psychoactive drugs. J Pharm Biomed Anal 39:139–146

    Article  PubMed  CAS  Google Scholar 

  19. Mohamed A, Refaat IH (1999) Spectrofluorimetric determination of some dibenzazepine drugs. Bull Pharm Sci 22:91–196

    Google Scholar 

  20. Rahman N, Afaq N (2010) Optimization and validation of spectrofluorimetric method for the determination of clomipramine hydrochloride via ion-pair complexation with alizarin red S. Anal Methods 2:513–518

    Article  CAS  Google Scholar 

  21. Valenzuela MA, Diaz TG, Diez NM, Rodriguez AS (2005) Response surface methodology for the optimisation of flow-injection analysis with insitu solvent extraction and fluorimetric assay of tricyclic antidepressants. Talanta 66:952–960

    Article  Google Scholar 

  22. Berzas JJ, Guiberteau C, Contento AM, Rodriguez V (2002) Sensitive and rapid high-performance liquid chromatographic method for simultaneous determination of antidepressants in pharmaceutical formulations. Chromatographia 56:545–551

    Article  CAS  Google Scholar 

  23. Yoshida H, Hidaka K, Ishida J, Yoshikuni K, Nohta H, Yamaguchi M (2000) Highly selective and sensitive determination of tricyclic antidepressants in human plasma using high-performance liquid chromatography with post-column (2,2′-bipyridyl) ruthenium (III) chemiluminescence detection. Anal Chim Acta 413:137–145

    Article  CAS  Google Scholar 

  24. Xiong CM, Ruan JL, Cai YL, Tang Y (2009) Extraction and determination of some psychotropic drugs in urine samples using dispersive liquid-liquid microextraction followed by high-performance liquid chromatography. J Pharm Biomed Anal 49:572–578

    Article  PubMed  CAS  Google Scholar 

  25. Cholobowska Z, Chudzikiewicz E, Koscielniak P, Pickoszewski W, Stolarz A (2003) Application of gas chromatography with NPD detection to the analysis of tricyclic antidepressants in blood. Chem Anal 48:255–263

    Google Scholar 

  26. Kłys M, Scislowski M, Rojek S, Kolodziej J (2005) A fatal clomipramine intoxication case of a chronic alcoholic patient: application of postmortem hair analysis method of clomipramine and ethyl glucuronide using LC/APCI/MS. Legal Med 7:319–325

    Article  PubMed  Google Scholar 

  27. Ortuno JA, Hernandez J, Sanchez Pedreno C (2006) Ion selective electrode for the determination of some multidrug resistance reversers. Sens Actuators B 119:282–287

    Article  CAS  Google Scholar 

  28. Berzas Nevado JJ, Villasenor Llerena MJ, Contento Salcedo AM, Aguas Nuevo E. Assay validation for three antidepressants in pharmaceutical formulations: practical approach using capillary gas chromatography. J Pharm Biomed Anal 38:52–59

  29. Tabrizi AB (2007) A simple spectrofluorimetric method for determination of piroxicam and propranolol in pharmaceutical preparations. J Food and Drug Analysis 15:242–248

    CAS  Google Scholar 

  30. Berzas JJ, Alanon A, Lazaro JA (2002) Cyclodextrin enhanced spectrofluorimetric determination of fluoxetine in pharmaceuticals and biological fluids. Talanta 58:301–309

    Article  PubMed  CAS  Google Scholar 

  31. Tong C, Zhuo X, Liu W, Wu J (2010) Synchronous fluorescence measurement of enrofloxacin in the pharmaceutical formulation and its residue in milks based on the yttrium (III)-perturbed luminescence. Talanta 82:1858–1863

    Article  PubMed  CAS  Google Scholar 

  32. Job P (1928) Ann Chim 9:113–203

    CAS  Google Scholar 

  33. Zhou GD (2003) Dictionary of chemistry. Chemical Industry Press, Beijing, p 654

    Google Scholar 

  34. Zhu Z, Yang RH, You MX, Zhang XL, Wu YR, Hong W (2010) Single-walled carbon nanotube as an effective quencher. Anal Bioanal Chem 396:73–83

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

One of the authors (Kuldeep Kaur) is grateful to the UGC for award of Teacher fellowship vide letter no.F.27-172(TF)/2010(NRCB).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashok Kumar Malik.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaur, K., Malik, A.K. Study on the Fluorescence Quenching Reaction of Amitriptyline and Clomipramine Hydrochlorides with Eosin Y and its Analytical Application. J Fluoresc 23, 533–542 (2013). https://doi.org/10.1007/s10895-013-1185-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-013-1185-y

Keywords

Navigation